当前位置:文档之家› 光纤激光器的工作原理

光纤激光器的工作原理

光纤激光器的工作原理
首先是光泵浦过程。

光泵浦是指通过将能量传递到光纤中,使得光纤中的电子能级达到激发状态,形成激光的准备过程。

常见的光泵浦方式有光纤耦合、半导体激光二极管泵浦和光泵浦等。

以光纤耦合为例,光泵浦通常采用二极管激光器作为激光泵浦源,通过耦合装置将二极管激光器的激光能量输入到光纤内部。

耦合装置可以是聚焦透镜、光纤光栅或光纤耦合器等。

在这一过程中,光纤中的掺杂物会吸收激光的能量,并使得电子在能级之间跃迁,电子能级升高。

这一过程中,激光能量转化为光纤中储存的电子能量。

接下来是能级传递过程。

在光泵浦的作用下,光纤中的掺杂物的电子能级上升。

而在激发态的能级上,由于能级之间的差异,电子会发生非辐射跃迁,即从高能级向低能级跃迁。

这个过程中电子会释放出能量,这些能量相当于光的频率,即激光。

能级传递的过程中,光纤中的掺杂物通常采用掺铒和掺镱进行杂质掺入。

铒掺杂的光纤激光器主要在红外、中红外和近红外波段工作,适用于通信、医疗和材料加工等领域;镱掺杂的光纤激光器主要在红外和中红外波段工作,适用于制造和工业设计等领域。

最后是激光输出过程。

在能级传递完成后,光纤激光器会通过逆向反射,使得光线在光纤中多次反射,增强激射光的强度。

这个过程被称为微腔引导,通过微腔结构使得光线在光纤中的传播路径被限制在一个很小的范围内。

而在这个范围内,激射光会积聚能量,并增强激射光的强度。

总之,光纤激光器通过光泵浦、能级传递和激光输出三个过程将光能转化为激光能。

它具有体积小、结构紧凑、效率高、可靠性强等优点,在通信、医疗、材料加工和制造等领域得到广泛应用。

相关主题