当前位置:文档之家› 现代科技导论论文——神奇的黑洞

现代科技导论论文——神奇的黑洞

学科现代科技导论老师黄致新姓名雷秀芳学号 2010210962 成绩________神奇的黑洞我们头顶那繁星满天的星空,当你看见那一闪一闪发亮的美丽的星星,你是否想过,其实,在那里,有着另外一些更为神奇的星星,我们用肉眼看不见它们,但我们却无法忽视它们的存在。

它们,便是黑洞!听见黑洞给我们的第一感觉可能是一个黑乎乎,让人感觉十分恐怖的一个洞。

但事实上,它确实一个很大,让你无法忽略的一个星球。

它是一种引力极强的天体,就连光也不能逃脱。

当恒星的史瓦西半径①小到一定程度时,就连垂直表面发射的光都无法逃逸了。

这时恒星就变成了黑洞。

我们说它“黑”,其实是由于它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。

就连光也不例外。

也正是由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。

只能通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。

也就是说,虽然黑洞是黑,但它本质上还是一颗星体。

其实,虽然你看不见黑洞,但它的很多方面都让你无法忽略。

其实,在宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。

这些黑洞质量大小不一,从100万个太阳质量到100亿个太阳质量。

而这样如此惊人的质量究竟又是如何形成的呢?天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。

物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘②盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。

黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。

这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子望远镜,以及位于智利帕拉那山的欧洲南方天文台甚大望远镜阵列。

并且,这些黑洞也和我们将星星进行分类一样,也具有很多的类别。

比如,他可以按组成分为暗能量③黑洞③和物理黑洞;按物理性质可以分为1,不旋转不带电荷的黑洞,2,不旋转带电黑洞,3,旋转不带电黑洞,4,一般黑洞,5,双星黑洞。

虽然这只是天体分类中的一小部分,但也说明了黑洞研究的重要性!对于每一项事物的研究,首先都是从他的组成和形成过程来进行研究的。

那么,现在就让我们来看一下黑洞究竟是由什么东西组成的。

对于这个问题,当代的学者有着自己各自不同的意见。

首先,最普遍也最容易让人接受的是黑洞是极小的孔,是恒星由于自身重量塌缩后形成的遗骸。

这也就是说,黑洞如一般星体的组成是一样的。

但是最近几年来,持不同意见的人提出了新的见解。

他们认为黑洞实际上是一种大型天体,由处于某种特殊状态的物质构成,在塌缩过程中,它逐渐凝结而形成了黑洞,这个过程就像水变成冰一样。

这一解释为研究量子引力理论提供了新思路,而量子引力理论有可能将爱因斯坦的广义相对论和量子力学统一起来。

前面两种观点都比较容易让人理解,但是现在又出现了一种非常激进的理论。

它不仅推测暗能量能发生冻结,还认为相对论将彻底失效。

它的支持者认为物理基本定律和凝聚态物质(稠密气体、液体以及介于液体与固体之间物质)的特性之间有相似之处。

从很多方面来说,给出声音在运动流体中的传播方程,一直是广义相对论的死结;声波被陷在流体中的现象和黑洞俘获光线很相似,也许时空实际上也是一种流体。

也就是说,如果这种理论最终被证实是成立的,广义相对论将会受到空前的质疑。

也许这只是某些人的空想,但也许,这也将会成为科学界的一大飞跃!对于黑洞具体是什么物质,还有待我们的进一步研究。

也许,在我们研究黑洞的形成的过程中,会有一些新的发现。

那么,现在让我们来看一下黑洞这个神奇的天体究竟是如何形成的。

其实黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。

当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。

但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。

任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样.而这样经过收缩之后形成的也就是一个新的黑洞。

其实,也可以这样来理解。

一般恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生裂变、聚变。

由于恒星质量很大,裂变与聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。

由于裂变与聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。

接着,氦原子也参与裂变与聚变,改变结构,生成锂元素。

如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。

直至铁元素生成,该恒星便会坍塌。

这是由于铁元素相当稳定不能参与裂变或聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。

这两种理解都是支持黑洞的组成的第一种理论的。

而这两种理解也是现在公认的两种理解。

其实,黑洞跟白矮星和中子星一样,很可能也是由质量大于太阳质量20倍的恒星演化而来的。

也就是如下过程。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。

这样,它再也没有足够的力量来承担起外壳巨大的重量。

所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。

而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。

如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

根据科学家的猜想,在这次坍缩种,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。

而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),在如此大的密度下,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

根据科学家计算,一个物体要有每秒中七点九公里的速度,就可以不被地球的引力拉回到地面,而在空中饶着地球转圈子了.这个速度,叫第一宇宙速度.如果要想完全摆脱地球引力的束缚,到别的行星上去,至少要有11.2km/s的速度,这个速度,叫第二宇宙速度.也可以叫逃脱速度.这个结果是按照地球的质量和半径的大小算出来的.就是说,一个物体要从地面上逃脱出去,起码要有这么大的速度。

可是对于别的天体来说,从它们的表面上逃脱出去所需要的速度就不一定也是这么大了。

一个天体的质量越是大,半径越是小,要摆脱它的引力就越困难,从它上面逃脱所需要的速度也就越大.按照这个道理,我们就可以这样来想:可能有这么一种天体,它的质量很大,而半径又很小,使得从它上面逃脱的速度达到了光的速度那么大。

也就是说,这个天体的引力强极了,连每秒钟三十万公里的光都被它的引力拉住,跑不出来了。

既然这个天体的光跑不出来,我们然谈就看不见它,所以它就是黑的了。

光是宇宙中跑得最快的,任何物质运动的速度都不可能超过光速.既然光不能从这种天体上跑出来,当然任何别的物质也就休想跑出来.一切东西只要被吸了进去,就不能再出来,就象掉进了无底洞,这样一种天体,人们就把它叫做黑洞.我们知道,太阳现在的半径是七十万公里。

假如它变成一个黑洞,半径就的大大缩小.缩到多少?只能有三公里.地球就更可怜了,它现在半径是六千多公里.假如变成黑洞,半径就的缩小到只有几毫米.那里会有这么大的压缩机,能把太阳地球缩小的这么!这简直象<天方夜谭>里的神话故事,黑洞这东西实在太离奇古怪了。

但是,上面说的这些可不是凭空想象出来的,而是根据严格的科学理论的出来的.原来,黑洞也是由晚年的恒星变成的,象质量比较小的恒星,到了晚年,会变成白矮星;质量比较大的会形成中子星.现在我们再加一句,质量更大的恒星,到了晚年,最后就会变成黑洞.所以,总结起来说,白矮星中子星和黑洞,就是晚年恒星的三种变化结果.也就说,其实,和黑洞能过称兄道弟的也就是白矮星和中子星,所以,在以后对黑洞的研究上,可以将他们进行一定的类比。

所以,其实在通过对黑洞形成的研究过程来研究它的组成上,我也还是比较的赞同黑洞组成的第一种说法。

而那最后一种,也就是最激进的一种,只能期待他能有一个好的开始。

最后,在对黑洞的整个探索过程中,我越发感到黑洞的神奇。

而这神奇的黑洞也有待我们的进一步的探索。

批注:①史瓦西半径:1史瓦西半径是任何具重力的质量之临界半径。

在物理学和天文学中,尤其在万有引力理论、广义相对论中它是一个非常重要的概念。

1916年卡尔·史瓦西首次发现了史瓦西半径的存在,他发现这个半径是一个球状对称、不自转的物体的重力场的精确解。

一个物体的史瓦西半径与其质量成正比。

太阳的史瓦西半径约为3千米,地球的史瓦西半径只有约9毫米。

②吸积盘:是一种由弥散物质组成的、围绕中心体转动的结构,它包围黑洞或中子星的气体盘。

盘内的摩擦力使气体逐渐螺旋下落,被吸积到黑洞或星体。

③暗能量:暗能量是某些人的猜想,指一种充溢空间的、具有负压强的能量。

按照相对论,这种负压强在长距离类似于一种反引力。

这个猜想是解释宇宙加速膨胀和宇宙中失落物质等问题的一个最流行的方案。

引用文献:《探测不准定理的起始》werner heisenberg 88-89页《巨大黑洞形成之谜》吴波 16-17页《物理学的挑战》李政道63-64页《时间简史》霍金。

相关主题