(简)发酵过程参数相关分析
.
代谢曲线对照
.
常规发酵过程分析的缺陷性
分析发酵数据时,通过产品小试研究形成工厂生产的 工艺控制为目标,把重点放在寻找最佳的操作点或某 参数时序变化规律,在方法上主要依据人工经验的试 差法,由此逐渐形成作为生产工艺管理的工艺规程。
----缺乏机理性认识,有局限性。 发酵过程动力学研究强调了参数趋势曲线的动态性并 采用了过程数学模拟等进行仿真,可进一步总结经验 规律,引入动态优化控制方法,为过程工艺优化研究 提供了内容。
.
参数曲线相关分析的优势
从发酵过程多尺度系统理论来看,参数趋势曲 线相关有可能是某一尺度的线性或动力学行为, 也可能是多尺度系统的结构性突变,因此用常 规的单一尺度模式有时就无法解释过程中发生 的许多现象。 虽然这些过程检测大多是环境中的状态或操作 量,但可以通过进一步分析,得到反映分子、 细胞和反应器工程水平的不同尺度问题的联系, 从而实现跨尺度观察和跨尺度操作。
发酵过程参数相关分析原理及应用
国家生化工程技术研究中心(上海) 庄英萍 ypzhuang@
.
主要内容
发酵过程特性概述 发酵过程的参数分类及检测 理化相关 生物相关 应用举例 下阶段工作展望
.
发酵过程特性概述
生物反应器中基因、细胞和反应器不同尺度网络之 间存在着以时间为坐标多输入多输出的互动关系。 表现在同一尺度下多过程的耦合,不同尺度下也往 往会有不同过程发生。 多尺度的研究方法要求从一个尺度观察另一尺度现 象,即所谓跨尺度观察与控制,即可能提供在生物 技术研究中所没有发现的现象。 研究尺度间相互作用和耦合的原则和条件,只有这 样才能进一步分析不同尺度下的各种子过程之间的 相互量化关系,并与已知条件关联,构成描述复杂 系统的综合模型或描述。
ddCtKLa(C*C)OUR
如果DO下降到临界氧浓度以下时,就引起菌体呼吸强 度的减弱,这实质上是氧成为限制性基质时的动力学行为
OUR QOmCX KO C
当DO继续下降,就可能产生厌氧代谢,代谢途径发生迁 移,甚至发生胞内酶体系的改变 ─── 发生反应体系的结构 性变化。
.
温度诱导的基因工程菌生长与表达
.
物理参数
直接参数
化学参数
温度
积累消耗量量
碱
泡沫水平
消泡剂
加料速率
细胞量
基质
气泡含量
前体
气泡表面积
诱导物
表面张力
培养液重量
培养液体积
生物热
培养液表观
粘度
pH 氧化还原电位 溶解氧浓度 溶解 CO2 浓度 排气 O2 分压 排气 CO2 分压 其他排气成分
.
成分浓度 糖 氮 前体 诱导物 产物
.
发酵过程的特性
发酵过程多以分批操作形式进行,随着细胞生长 和代谢过程的变化,各种测量参数(自动或手工 实验室测定)随时间的变化而变化,通过对这些 变化进行研究,有可能获得对发酵工艺和过程控 制的有关认识,有利于发酵过程优化。 有必要在计算机辅助下对过程进行时序性综合研 究和分析。 通过这些趋势曲线可以看出检测参数的多样性、 时变性、相关耦合性和不确定性。
当用λPL,C启动子构建表达载体时, PL,R启动子受λ噬菌体cI基因的负调 控,cI基因产生的阻遏蛋白结合在 操纵基因上,阻止转录的进行。当 在28~30℃培养时,利用cI的温度 敏感突变基因的突变体可以产生有 活性阻遏蛋白,阻遏PL,R转录,细 菌大量生长。温度上升到42℃,造 成阻遏蛋白失活,PL,R解除阻遏, 启动外源基因的高效转录和表达, 从而合成大量有价值的外源蛋白。
.
参数相关耦合的定义
参数耦合相关是指各种直接参数、间接参数 以及实验室手工参数随着发酵过程的进行而 变化,并且参数间发生某种耦合相关。
这种参数相关是生物反应器中物料、能量或 信息传递、转换、以及平衡或不平衡的结果, 其微观因素也许只是发生在基因、细胞或反 应器工程水平的某一个尺度上,但最终会在 宏观过程中有所反映,这就为我们研究生物 反应器中不同尺度的数据关联分析方法提供 了线索。
中间代谢物 金属离子 脱氢酶活力 各种酶活力 细胞内成分 蛋白质 DNA RNA
生化反应过程中参数检测的复杂性
1)反应器上插入的传感器必须能耐热,经受高温灭 菌; 2)菌体以及其他固体物质极易吸附在传感器的表面, 使一些传感器的使用性能受到影响; 3)生物反应过程往往是耗氧的过程,故在反应器内 通气带来的气泡影响,往往对测量过程会造成干扰; 4)使用在反应器上的传感器,其结构必须防止杂 菌进入和避免产生灭菌死角,因而使传感器结构复 杂或使其检测性能产生变化; 5)生化反应过程中化学成分的分析往往是重要的检 测内容,但对其电信号的转换困难。
.
发酵过程参数检测技术要求越来越高
微生物学 生物化学 分子生物学 发酵工艺学 化学工程 现代控制理论 各种工程开发
参数检测 (自动或手工检测) 综合性研究:
在线计算机
定性和定量的描述
工业生产
——随着生物技术的快速发展,生化工程对传感技术、计 算机数据处理的要求越来越高,有望形成新的技术领域
.
(一)、 发酵过程的参数分类及检测
直接参数 通过传感器把非电量变化直接转化为电量变化,
实时地送计算机数据采集。物理参数、化学参数、 生物量参数就地测量(in line)、在线测量(on line)
手工参数:取样后实验室手工测量参数,离线输入。 间接参数:由一些直接参数计算得到的各种反映过程特性的
参数。反映菌体代谢活性、反应器工程特性、反应 器操作特性等。
----强调参数各自的时序变化,缺乏数据时序变化 之间的相关分析
.
发酵过程特性产生的原因
随着菌体生长和基质消耗,过程状态随时间变化的, 因此测量参数的时变性反映了发酵过程的时变系统特 征。
由于发酵过程多容量性和严重非线性特征,表现在过 程测量参数的离散性,主要是细胞代谢对环境因子的 高度敏感性和细胞代谢的不可逆性,有时还表现在基 因水平的启动和表达的影响,输入的初始条件极细微 的差别会产生结果的巨大变化,即发酵过程混沌现象。
由于对上述现象缺乏认识,更无法控制,也就描述为 测量参数的不确定性,应加强有关生物学机理的认识, 才能在产品的工业发酵生产上取得突破性进展。
.
好氧生物反应器供氧情况变化引起的变化
当降低搅拌转速时,供氧速率(OTR)下降必然引起溶解 氧浓度(DO)的下降,这是一个属于生物反应器系统中的 过程传递和混和问题