精心整理
TSC 的触发电路
1.介绍晶闸管投切电容器的原理和快速过零触发要求
晶闸管投切电容器组的关键技术是必须做到电流无冲击。
晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网
当电路的谐振次数n 为2、3时,其值很大。
式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。
若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。
1. 当得到TSC 电管+高。
如果
MOC3083芯片内部有过零触发判断电路,它是为220V 电网电压设计的,芯片的双向可控硅耐压800V ,在4、6两端电压低于12V 时如果有输入触发电流,内部的双向可控硅就导通。
用在380V 电网的TSC 电路上要串联几只3083。
在2控3的TSC 电路应用如图四:
图四2控3的TSC 电路
用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。
这种触发电路随机给触发命令要出现下面的许多麻烦问题。
快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。
图五测量不正常工作的两对晶闸管的电压波形。
此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。
晶闸管导通时两端电压
为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。
测量C相停止时峰峰值电压为540V,其有效值=,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。
推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。
信息请登陆:输配电设备网图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。
电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。
信息请登陆:输配电设备网
*在初次投切时有一定的冲击。
下面是国外着名产品的首次投切的电流波形。
图六:国外公司产品的第一次触发冲击波形
记录C相晶闸管两端电压,A相电流。
电流投切冲击很大,使得电网电压都产生了变形。
信息来自:
*
*
*
*
3.
努力,
源:
切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。
新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。
用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。
由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。
A探头为电压,B探头为电流。
图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。
横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。
可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。
在连续动作中,电流没有冲击。
=1.33。
h
t
适合TSC。