当前位置:文档之家› 2 高光谱遥感成像系统

2 高光谱遥感成像系统

54
5.澳大利亚ARIES卫星
55
6.日本ADEOS卫星
56
其他大气环境探测专用航天成像光谱仪
57
六、我国成像光谱仪的发展
1)航空成像光谱仪


80年代,研制和发展了新型模块化航空成像光谱仪(MAIS)。这一 成像光谱系统在可见—近红外—短波红外—热红外多光谱扫描仪集成 使用,从而使其总波段达到70—72个。 高光谱仪器的研制成功,为中国遥感科学家提供了新的技术手段。通 过在我国西部干旱环境下的地质找矿试验,证明这一技术对各种矿物 的识别以及矿化蚀变带的制图十分有利,成为地质研究和填图的有效 工具。 此后,中国又自行研制了更为先进的推帚式成像光谱仪(PHI)和实 用型模块化成像光谱仪(OMIS)等。 新的成像光谱系统不仅继续在地质和固体地球领域研究中发挥作用, 而且在生物地球化学效应研究、农作物和植被的精细分类、城市地物 甚至建筑材料的分类和识别方面都有很好的结果。
46


EO-1中的三台主载荷分别为先进陆地成像仪 (Advanced Land Imager,ALI),高光谱成像仪 (Hyperion)以及高光谱大气校正仪(Linear etalon imaging spectrometer array Atmospheric Corrector,LAC)。 其中Hyperion用于地物波谱测量和成像、海洋水 色要素测量以及大气水汽/气溶胶/云参数测量等, 其性能比EOS Terra卫星上的MODIS要好的多。
10
11 12 13 14 15
753.75
760.625 778.75 865 885 900
7.5
3.75 15 20 10 10
Vegetation, cloud
Oxygen absorption R-branch Atmosphere corrections Vegetation, water vapour reference Atmosphere corrections Water vapour, land
第二章 高光谱成像系统
本章主要介绍传感器技术的发展, 成像光谱仪的特点,高光谱遥感图像数 据表达,光谱成像方式以及常见的高光 谱仪。
1
一.遥感传感器成像技术的发展
2


成像光谱技术则把遥感波段从几个、几十个推向数百 个、上千个。高光谱遥感数据每个像元可以提供几乎 连续的地物光谱曲线,使我们利用高光谱反演陆地细 节成为可能。 如一个TM波段内只记录一个数据点,而航空可见光/红 外光成像光谱仪(AVIRIS)记录这一波段范围内的光谱 信息用10个以上数据点。
综合平台上的中分辨率成像光谱仪(MODIS),欧洲环境卫星
(ENVISAT)上的MERIS,以及欧洲的CHRIS卫星相继升空,宣 告了航天高光谱时代的来临。
39
美国对航天成像光谱技术的研究一直遥遥领先,但是发展之路也并非一 帆风顺,全球第一个星载高光谱成像器于1997年在NASA随着Lewis卫星
31
80年代早期高光谱航天成像光谱仪
32
AVIRIS
航空可见光/红外成像光谱仪AVIRIS。 80年代后期,美国喷气推进研究室(JPL) 制成机载可见红外成像光谱仪(AVIRIS) 的完整样机。该成像光谱仪可在0.4μm~ 2.45μm的波长范围获取224个连续的光谱 波段图像。波段宽度10nm。当飞机在20km 高空飞行 时,图像地面分辨率可达20m。

成像光谱仪由探测器360度摇摆,飞机向前运动,形成 二维空间成像。如:OMIS AVIRIS等
22
23
24
2)推扫型成像光谱仪 推扫型成像光谱仪采用一个垂直于运动方向的面 阵探测器,在飞行平台向前运动中完成二维空间 扫描。成像光谱仪的扫描方向就是遥感平台运动 的方向如:PHI,CASI等

25
47
48
49
3.CHRIS卫星/Proba
50
51
4、MERIS卫星/Envisat
52
53
MERIS的15个波段的技术指标与应用目的
Band centre (NM) 1 2 3 4 5 6 7 8 9 412.5 442.5 490 510 560 620 665 681.25 708.75 Bandwidth Potential Applications (NM) 10 10 10 10 10 10 10 7.5 10 Yellow substance and detrital pigments Chlorophyll absorption maximum Chlorophyll and other pigments Suspended sediment, red tides Chlorophyll absorption minimum Suspended sediment Chlorophyll absorption and fluorescence Chlorophyll fluorescence peak Fluo. Reference, atmospheric corrections
15


OXY平面:与传统的图象平面相同,表示黑白单波 段图象,反应一个波段的信息。 OXZ平面:y方向的光谱切面 OYZ平面:x方向的光谱切面 它们代表一条直线上的光谱信息。
16
17
18
Envi里面的实践环节
19
四.光谱成像的方式


完成成像方式是一个集探测技术,精密光学机械,微弱信 号探测,计算机技术及信息处理技术等为一体的综合性技 术。其中硬件技术的成熟会不断推动成像光谱技术的提高, 因此有必要对于成像光谱的硬件技术进行了解。 高光谱遥感的成像包括空间维成像和光谱维成像。

aviris data
/html/aviris.freedata.html
33
近年来,有代表性的新产品
34
热红外成像光谱仪
35
几种常见的航空高光谱成像仪
36
37
38
2)航天成像光谱仪
在经过航空试验和成功运行应用之后,90年代末期终于迎来了高 光谱遥感的航天发展。1999年美国地球观测计划(EOS)的Terra
3
历史发展




全色(黑白)--彩色摄影—多光谱扫描成像—高光谱遥感 1960年人造地球卫星围绕地球获取地球的图片资料时,成像就成为 研究地球的有利工具。 在传统的成像技术中,黑白图像的灰度级别代表了光学特性的差异 因而可用于辨别不同的材料。 对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、 研究大气、海洋、土壤等的辨别能力大有裨益。这就是人类最早的 多光谱成像(Multispectral imaging)。 1980年高光谱成像技术(Hyperspectral Imaging)诞生了,它最早 是机载的成像光谱仪(Airborne Imaging Spectrometer),如今已 拓展到先进的可见和红外成像光谱仪(AVIRIS),这两种最早都诞 生在NASA的JPL中心(NASA:美国国家航天航空管理局)。
4
5
二.成像光谱仪的特点
与地面光谱辐射计相比,成像光谱仪不是在“点”上的光谱测 量, 而是在连续空间上进行的光谱测量,因此它是光谱成像的,与 传统多光谱遥感相比,其波段不是离散的而是连续的,因此从 它的每个像元均能提取一条光滑而完整的光谱曲线,如图所 示。成像光谱仪解决了传统科学领域“成像无光谱”和“光谱 不成 像”的历史问题。
发射升空,它包含了384个波段涵盖了400-2500nm波段,不幸的是这颗
卫星控制出现问题,失去了动力,升空一个月后就偏离了轨道。2001年 的Orbview-4卫星发射失败,但是经过多年的努力,如今也有一些比较有 代表性的高光谱卫星。下面主要介绍美国及其他发达国家在高光谱遥感 卫星的情况:
40
1. :高光谱分辨率高

光谱分辨率:遥感器能分辨的最小波长间隔, 是遥感器的性能指标。比如图中纵坐标(y轴) 表示探测器的光谱响应,横坐标(x轴)代表波 长,那么光谱分辨率被定义为仪器达到光谱响 应最大值的50%的波长宽度。
7


空间分辨率:成像光谱仪的一个瞬间视场,即 在一瞬间遥感系统探测单元所对应的瞬间视场 (IFOV)。IFOV以毫弧度(mrad)计量,其 对应的地面大小被称为地面分辨率单元 (Ground Resolution Cell,GR)它们的关系 为: GR = 2*tan(IFOV/2)*H
时间 探测器 噪声 输出图像
通道1
+ +
通道2
场景
通道K
+
20
了解两个概念: 视场角:仪器在空中所扫描的角度,它决定 了地面的扫描幅宽。 凝视时间:仪器视场角扫过地面单元所持续 的时间。凝视的时间越长,进入探测器的能 量越多。光谱响应和图像的信噪比越高。
21
空间维成像
通过飞行平台的平动和飞行平台上成像光谱仪的工作 模式来决定,常用的工作模式为摆扫型和推扫型。 1)摆扫型成像光谱仪 摆扫型成像光谱仪由光机左右摆扫和飞行平台向 前运动完成二维空间成像,其中线列探测器完成 每个瞬时视场像元的光谱维获取。
8



时间分辨率:对同一地点进行遥感采样的时 间间隔,即采样时间的频率。 信噪比(SNR):signal to noise ratio,遥感 器采集的信号和噪声之比。信噪比的高低直 接影响了图像分类和图像识别等处理效果。 在实际应用中,空间分辨率和光谱分辨率以 及信噪比是相互制约的,两种分辨率的提高 都会降低信噪比,那么必须综合考虑这三个 方面的指标,进行取舍。
41
MODIS技术指标表:
42
MODIS波段分布和主要应用:
43
44

Terra卫星上的另外一个传感器是热辐射及反 射探测器(ASTER),获取的数据广泛地应 用与反演陆面温度、比辐射率、反射率以及高 程信息等。
相关主题