光电信号检测第八章
光电器件
成像物镜
被测钢板边缘
图8-2钢板边缘位置光电检测
5
信息光电子研究所 Information optoelectronics research
8.1.1单元光电信号的二值化处理
1、固定阈值法二值化处理电路
图8-3为典型固定阈值法二值化处理电路。图中电压比较 器的“—”输入端接能够调整的固定电位Uth。由电压比较 器的特性可知,当输入的光电信号值使同相输入的电压 U+高于固定电位Uth时,比较器输出高电平,即为1;当 U+低于Uth时,不管其值如何接近于Uth,其输出都为低电 平,即为0。
Vcc Ui Rp R1 R2 + A _
U。
Uth
光电检测系统 的精度不受光 源的稳定性影 响情况下适用
7
信息光电子研究所 Information optoelectronics research
图8-4浮动阈值的二值化处理电路
8.1.2视频信号的二值化处理
二值化处理是把图像和背景作为分离的二值图像对待。
8
信息光电子研究所 Information optoelectronics research
8.1.2视频信号的二值化处理
CCD 视频信号 低通滤波 微分II
微分 I 过零触发
绝对值
二值化
滤波后变成连续信号,再通过微分I电路, 输出视频信号的变化率,信号电压的最 大值对应视频信号边界过渡区变化率最 大点A及A‘。微分I电路对应视频信号的 上升边与下降边输出了两个极性相反的 信号,经过绝对值电路将微分I电路输出 的信号转变成同级性。信号的最大值对 应边界特征点。信号通过微分II电路后, 获得对应最大绝对值处的过零信号,再 经过过零触发电路后,输出了两个过零 信号,它们就是视频信号起初边界的特 征信息。计算连个脉冲的间隔,可获得 图像的二值化宽度。
2ቤተ መጻሕፍቲ ባይዱ
信息光电子研究所 Information optoelectronics research
8.1.1单元光电信号的二值化处理
例1、运动机件的控制:
运动过程: S
V1高速
V2低速
A
V2低速 V1高速
B
D1 S V1 A
D2 B V2
D3
V1
S1
信息光电子研究所 Information optoelectronics research
图8-5浮动阈值的二值化电路 CCD视频输出的脉冲调制信号经过低通 视频信号 微分I 绝对值 微分II
O
O O O O
A
A'
t t t t t t
过零触发
二值化信 O 号
9
信息光电子研究所 图8-6电路工作波形 Information optoelectronics research
8.1.3光电信号二值化数据采集与接口
Information optoelectronics research
14
线阵CCD在对物体外形尺寸、位置、振动等的测量应用中常采用二值化 处理方法。
1、硬件二值化数据采集电路
硬件二值化数据采集电路由与门电路、二进制计数器、锁存器和显示器 等硬件逻辑电路构成。 电路原理方框图如图8-7所示,,工作波形如图8-8所示。
10
信息光电子研究所 Information optoelectronics research
2、浮动阈值法二值化处理电路 图8-4为阈值电压随光源浮动的二值电路。图中的阈值电 压为从光源分得一部分光加到光电二极管上。光电二极 管在适当的偏置下输出与光源的发光强度呈线性变化的 电压信号。用这个电压信号作为阈值,即可得到随发光 强度浮动的阈值Uth。将Uth加到电压比较器的“—”输入端, 将检测信号的输出加到电压比较器的正输入端,在输出 端所得到的信号U。即为随发光强度浮动的二值化信号。
8.1.3光电信号二值化数据采集与接口
图8-8中fc的低电平使计数器清“0”;它在变成高电平以后, 计数器可进行计数工作。 •主时钟脉冲fM的频率是采样 脉冲SP或抚慰脉冲RS频率的 整数(N)倍,而SP或RS脉冲周 期恰为CCD输出1个像元周期 的1/ N。方波脉宽中的fM脉冲 数为方波范围内像敏单元的N 倍。可见,采用高于采样脉冲 SP频率N倍的主时钟fM为计数 脉冲,能够获得细分像敏单元 的效果,使测量的精度更高。
11
信息光电子研究所 Information optoelectronics research
线阵CCD的驱动器除产生CCD所 需要的各种驱动脉冲以外,还要 产生行同步控制脉冲fc和用做二 值化计数的输入脉冲(或主脉冲) fM,并要求fc上升沿对应于CCD 输出信号的第一个有效像素单元。 fM脉冲的频率是复位脉冲RS频率 的整数倍,或为CCD的采样脉冲。
第8章 光电信号的数据采集与微机 接口
王静
信息光电子研究所 Information optoelectronics research
8.1光电信号的二值化处理
光电信号的二值处理:将光电信号转换成计算机能识别的“0” 或“1”数字信号的过程。
8.1.1单元光电信号的二值化处理
单元光电信号:由一个或几个光电转换器件构成的光电转换 电路所产生的独立信号称为单元光电信号。
例:光学系统把被测对象成像在CCD光敏件上,由于被测物与 背景在光强上强烈变化,反映在CCD视频信号中所对应的图像 尺寸边界处会有明显的急剧的电平变化。通过二值化处理会 把CCD视频信号中图像尺寸部分与背景部分分离成二值电平。
实现CCD视频信号二值化处理方法很多,可以用电压比较器进 行固定阈值或浮动阈值处理方法,也可以采用微分法等进行 二值化处理方法。
2、边沿送数法二值化数据电路
数据总线DB
CCD 视频信号
反相器 二值化电路
锁存器1 fM fc
锁存器2
计数器
图8-9边沿送数法二值化数据采集电路原理方框图 •由线阵CCD行同步脉冲fc控制的二进制计数器计得每行的标准脉冲fM(可以 是CCD的复位脉冲RS或像元采样脉冲SP)数。当标准脉冲为CCD的复位脉 冲RS或像元采样脉冲SP时,计数器某时刻的计数值为线阵CCD在此刻输 出像敏单元的位置序号,若将此刻的数值用边沿锁存器锁存,那么边沿锁 存器就能够将CCD某特征像元的位置输出,并存储起来。
S2
S3
图8-1运动机件的控制
3
8.1.1单元光电信号的二值化处理
需要在S、A、B三个点设置三个光电转换器,从 而得到三个单元信号。根据控制的要求,只需要 给出机件是否到达A、B 、 S点,即A、B 、 S点的 光信号输出时0还是1的问题,计算机可根据0,1 的变化时间判断出方向,决定发出的控制(速 度)。这是一个简单的单元光电信号的二值化处 理问题。可用固定阈值法进行二值化处理。
13
信息光电子研究所 Information optoelectronics research
8.1.3光电信号二值化数据采集与接口
SH fc
CCD视频信号 二值化输出
阈值电平
N1
N2
图8-10边沿送数法二值化数据采集电路工作波形 在这种方式下计数器在fc高电平期间计下CCD输出的像元位置序号。另外, CCD输出的载有被测物体直径像的视频信号经过二值化处理电路产生被测 信号的方波脉冲,其前、后边沿分别对应于线阵CCD的两个位置。将该方 波脉冲分别送给两个边沿信号产生电路,产生两个上升沿,分别对应于方 波脉冲的前、后边沿,即线阵CCD的两个边界点。用这两个边沿脉冲的上 升沿锁存二进制计数器在上升沿时刻所计得数值N1和N2,则N1为二值化 方波前沿时刻所对应的像元位置值,N2为后沿所对应的像元位置值。在行 周期结束时,计算机软件分别将N1和N2的值通过数据总线DB存入计算机 内存,便可获得二值化方波脉冲的宽度信息与被测图像在线阵CCD像敏面 上的位置信息。 信息光电子研究所
4
信息光电子研究所 Information optoelectronics research
8.1.1单元光电信号的二值化处理
例2、切钢板时,当被 照光电池刚好被遮挡一半时, 切刀落下,将钢 板切下,这需要对单元 光电信号进行二值化处 理,给出0,1信号。在 考虑到光源发光强度的 稳定度直接影响测量误 差时,就要考虑用浮动 阈值法。
SP fc 二值化 fM 锁存CK
图8-8硬件二值化数据采集电路工作波形
•适用于在一个行周期内只有一个二值化脉冲情况,只能采集二值 化脉冲宽度或被测物体的尺寸而无法检测被测物体在视场中的位置。
12
信息光电子研究所 Information optoelectronics research
8.1.3光电信号二值化数据采集与接口
8.1.3光电信号二值化数据采集与接口
显示器 延时电路 二值化信号 与门
CK锁存器
fM
计数器
fc
图8-7硬件二值化数据采集原理 框图 •CCD的视频信号经二值化处理电路产生的方波脉冲,加到与门 电路的输入端,控制输入脉冲fM是否能够送到二进制计数器的 计数输入端。用fc的低电平作为计数器的复位脉冲。锁存器的 触发输入端CK直接接在二值化输出信号后沿触发的送数脉冲电 路(延时电路)的输出端上,多存起的输出经数据总线送至计 算机。
R2 Ui R1 +5V Uth Rp + A _ U。
优点:电路简单、可靠; 缺点:受光源的不稳定影响 大,需要稳定光源,或在要 求控制精度较低的场合应用。
6
信息光电子研究所 Information optoelectronics research
图8-3固定阈值法二值化处理电路
8.1.1单元光电信号的二值化处理