发电厂电气部分课程设计级专业班级题目姓名学号指导教师题目BY市110kV降压变电所设计一、设计内容设计一110kV降压变电所,该所位于BY市边缘,供给城市和近郊工业、农业及生活用电。
电压等级:110kV:近期2回,远景发展2回;10kV:近期13回,远景发展2回。
电力系统接线简图、负荷资料及所址条件见附件。
二、设计任务1.变电所总体分析;2.负荷分析计算与主变压器选择;3.电气主接线设计;4.短路电流计算及电气设备选择。
三、设计成品要求1.课程设计说明书1份;2.电气主接线图1张。
1 变电站总体分析市变电站位于市边缘,供给城市和近郊工业、农业及生活用电,是新建地区变电所。
变电站做为电力系统中起着重要的连接作用,是联系发电厂与负荷的重要环节。
本课程设计主要是关于本变电站的一次设计,为了是变电站的一次设计能够很好的接入电力系统,使电力系统安全可靠的运行,下面对本变电站做初步分析的原始数据进行分析。
1.变电站类型:110KV地方降压变电站2.电压等级:110/10KV3.线路回数:110KV:2回,备用2回;10KV:13回,备用2回;4.地理条件:平均海拔100m,地势平坦,交通方便,有充足水源,属轻地震区。
年最高气温+42℃,年最低气温-18℃,年平均温度+16℃,最热月平均最高温度+32℃。
最大风速35m/s,主导风向西北,覆冰厚度10mm。
5.负荷情况:主要是一、二级负荷,市内负荷主要为市区生活用电、棉纺厂、印染厂等工业用电;郊区负荷主要为郊区变电站及其他工业用电。
6.系统情况:根据任务书中电力系统简图可以看到,本变电站位于两个电源中间,有两个发电厂提供电能,进而经过该变电站降压后用于工业、农业等负荷用电,需要一定的可靠性。
2 负荷分析及主变压器的选择2.1 负荷计算的目的:计算负荷是供电设计计算的基本依据,计算负荷确定得是否正确合理,直接影响到电器和导线电缆的选择是否经济合理。
如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的消耗浪费,如计算负荷确定过小又将使电器和导线电缆处子过早老化甚至烧毁,造成重大损失,由此可见正确确定计算负荷重要性。
2.2负荷分析10KV 侧:近期负荷:P 近=(2+2+1+1+2+3+2+1.5+1.5+1.5)MW=17.5MW远期负荷: P 远=(3+3+1.5+1.5+3+4.5+3.5+2+2+2+2+2)=30MW∑=ni Pi 1=17.5MW+30MW=47.5MW综合最大计算负荷计算公式:S js =Kt*1cos niii P φ=∑*(1+α%) (注:Kt:同时系数,取85%; α%:线损,取5%)S js 近=Kt*max 1cos ni ii P ϕ=∑近*(1+α%)=Kt*(2211232 1.5 1.5 1.50.80.80.80.780.750.780.80.80.750.8+++++++++) *(1+α%) =0.85*17.755*(1+0.05)=15.85MVAS js 远=Kt*max 1cos ni i P iϕ=∑远*(1+α%) =Kt*(33 1.5 1.53 4.5 3.52220.80.80.80.780.750.780.80.80.750.8+++++++++)*(1+α%)=0.85*33.065*1.05=29.51MV A视在功率:S =S js 近+S js 远=15.85MV A+29.51MV A=45.36MV A2.3主变压器的选择一. 相数的确定:330KV 以下的电力系统,在不受运输条件限制时,应用三相变压器。
二. 绕组数的确定:对深入引进负荷中心、具有直接从高压降为低压供电条件的变电所,为简化电压等级或减少重复降压容量,可采用双绕组变压器。
三. 主变压器台数的确定在这次变电站设计中,可以采用一台或两台主变压器,下面对单台变压器和两台变压器进行比较:由前设计任务书可知、正常运行时,变电所负由110kV 系统供电,考虑到重要负荷达到47.5MW ,并考虑到现今社会用户需要的供电可靠性的要求更高,应采用两台容量相同的变压器并联运行。
四. 变压器容量和型号的确定容量选择及检验公式:n()远10k v N 6S .0S 1n ≥-,()区∏I ≥-.10k v 1S S n N,近v 10k N S S ≥(其中n 为变电站设计中变压器的台数,在这次设计中,n=2)因此根据上述式子及负荷分析可以选择两台型号为SFQ720000/110的有载调压变压器,变压器的技术参数如下表所示:3 主接线的选择3.1 对电气主接线的基本要求变电所主接线选择的主要原则有以下几点:(1)供电可靠性:如何保证可靠地(不断地)向用户供给符合质量的电能是发电厂和变电站的首要任务,这是第一个基本要求。
(2)灵活性:其含义是电气主接线能适应各种运行方式(包括正常、事故和检修运行方式)并能方便地通过操作实现运行方式的变换而且在基本一回路检修时,不影响其他回路继续运行,灵活性还应包括将来扩建的可能性。
(3)操作方便、安全:主接线还应简明清晰、运行维护方便、使设备切换所需的操作步骤少,尽量避免用隔离开关操作电源。
(4)经济性:即在满足可靠性、灵活性、操作方便安全这三个基本要求的前提下,应力求投资节省、占地面积小、电能损失少、运行维护费用低、电器数量少、选用轻型电器是节约投资的重要措施。
根据以上的基本要求对主接线进行选择。
3.2 110kV侧接线的选择方案(一)单母线分段接线优点:(1)母线发生故障时,仅故障母线停止供电,非故障母线仍可继续工作,缩小母线故障影响范围。
(2)对双回线路供电的重要用户,可将双回路接于不同的母线段上,保证对重要用户的供电。
缺点:当一段母线故障或检修时,必须断开在该段上的全部电源和引出线,这样减少了系统的供电量,并使该回路供电的用户停电方案(二): 桥形接线110kV侧以双回路与系统相连,而变电站最常操作的是切换变压器,而与系统联接的线路不易发生故障或频繁切换,因此可采用内桥式线,这也有利于以后变电站的扩建。
优点:高压电器少,布置简单,造价低,经适当布置可较容易地过渡成单母线分段或双母线分接线。
缺点:可靠性不是太高,切换操作比较麻烦。
方案(三):双母线接线优点:(1)供电可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不至于供电中断,一组母线故障后能迅速恢复供电,检修任一组的母线隔离开关时只停该回路。
(2)扩建方便,可向双母线的左右任何一个方向扩建,均不影响两组母线的电源和负荷的平均分配,不会引起原有回路的停电,以致连接不同的母线段,不会如单母线分段那样导致交叉跨越。
(3)便于试验,当个别回路需要时单独进行试验时可将该架路分开,单独接至一组母线上。
缺点:(1)增加一组母线和每回路需增加一组母线隔离开关,投资大。
(2)当母线故障或检修时,隔离开关作为倒换操作电器容易误操作,为了避免隔离开关误操作需在隔离开关和断路之间装设连锁装置。
对于110kV侧来说,因为它要供给较多的一类、二类负荷、因此其要求有较高的可靠性。
对比以上三种方案,从经济性、可靠性等多方面因素考虑,最佳设计方案为方案(一)。
具有一定的可靠性和可扩展性,而且比双母线投资小。
3.3 10kV侧接线选择方案(一):单母线接线优点:接线简单清晰、设备少、投资少、运行操作方便、且有利于扩建。
缺点:可靠性、灵活性差、母线故障时,各出线必须全部停电。
方案(二):单母线分段接线优点:(1)母线发生故障时,仅故障母线停止供电,非故障母线仍可继续工作,缩小母线故障影响范围。
(2)对双回线路供电的重要用户,可将双回路接于不同的母线段上,保证对重要用户的供电。
缺点:当一段母线故障或检修时,必须断开在该段上的全部电源和引出线,这样减少了系统的供电量,并使该回路供电的用户停电。
方案(三):分段断路器兼作旁路断路器的单母线分段缺点:投资增大、经济性能差。
对比以上三种方案:单母线接线可靠性低,当母线故障时,各出线须全部停电,不能满足I、II 类负荷供电性的要求,故不采纳;将I、II 类负荷的双回电源线不同的分段母线上,当其中一段母线故障时,由另一段母线提供电源,从而可保证供电可靠性;虽然分段断路器兼作旁路断路器的单母线分段也能满足要求,但其投资大、经济性能差,故采用方案(二)单母线分段接线。
主接线图见附录14 短路电流计算4.1电力系统简图图4-1 电力系统简图注:LGJ150:0.416Ω/km LGJ185: 0.410Ω/km LGJ240: 0.401Ω/km4.2 各回路阻抗的计算(取SB=100MV A,V B=Vav)图4-2 电力系统化简图最大运行方式下:1112221000.8*0.06412501000.8*0.229350B S B S S X X S S X X S ======32425262721000.410*14*0.0431151000.416*6*0.0191151000.401*10*0.0301151000.410*20*0.0631151000.410*26*0.081115X X X X X ==========根据所选变压器的技术参数可以求变压器的阻抗:1%10.5100*0.525210010020S B T TN V S X S =••==4.3 110KV 侧短路分析:图形化简:图4-3 110KV 侧短路线路化简图(1)8279340.2290.080.3100.0430.0190.062X X X X X X =+=+==+=+=(2) △—Y9510569961156956125690.062*0.0300.0120.0300.0620.0620.062*0.0620.0250.0300.0620.0620.062*0.0300.0120.0300.0620.062X X X X X X X X X X X X X X X X X X ===++++===++++===++++(3) Y —△1101213110128118111214811121100.0907()()0.0399X X X X X X X X X X X X X X X X X X +=+++=++=+++=+()()(4)1314//0.074f X X X ∑== 起始次暂态电流:1.08''7.320.074B B f E I I KA X ∑==== 冲击电流:"18.63ish im I k I KA ===计算电抗:*12503500.074* 1.184100I II js B S S X X S +∑+=== 查表得: t=0.2S 时,*0.920P I = 0.2 6.73f I KA = t =2S 及2S 后时,* 1.029P I = 7.532f I KA ∞=4.410KV 侧短路分析:图4-4 10KV 侧短路线路化简图 (1)8279340.2290.0830.3120.0430.0190.062X X X X X X =+=+==+=+=(2) △—Y9510569961156956125690.062*0.0300.0120.0300.0620.0620.062*0.0620.0250.0300.0620.0620.062*0.0300.0120.0300.0620.062X X X X X X X X X X X X X X X X X X ===++++===++++===++++(3)113101*********.0640.0120.0760.3120.0250.3370.5250.0120.537T X X X X X X X X X =+=+==+=+==+=+= (4) Y —△1315161315141415171415130.7343.255X X X X X X X X X X X X =++==++=(5)1617//0.599f X X X ∑== 起始次暂态电流:''9.91B B f E I I KA X ∑==== 冲击电流:"25.23im im I k I KA ===计算电抗:*12503500.599*9.584100I II js B S S X X S +∑+=== 当计算电抗js X <3.45时,其短路电流查表得出; 当计算电抗js X ≥3.45时,则可以近似地认为短路周期电流的幅值已不随时间而变 即0.29.919.91f f I KAI KA∞==5 电气设备的配置与选择5.1断路器的选择一. 110kV 侧断路器的选择1、该回路为 110 kV 电压等级,故可选用六氟化硫断路器。