非线性光学天津大学精仪学院光电一室2013-3-25非线性光学讲议授课对象:光电子技术专业高年级本科生课程要求:理解非线性光学的基本原理,掌握倍频、混频及光参量振荡等非线性光学频率变换的基本手段及其应用。
了解激光束的自作用、受激散射、光学相位共轭及光学双稳态的原理和实验装置。
学时:32 学分:2目录绪论 (1)第一章非线性光学极化率的经典描述 (5)1.1极化率的色散特性 (5)1.1.1介质中的麦克斯韦方程 (5)1.1.2极化率的色散特性 (6)1.1.3极化率的单位 (10)1.2非线性光学极化率的经典描述 (11)1.2.1一维振子的线性响应 (11)1.2.2一维振子的非线性响应 (13)1.3非线性极化率的性质 (16)1.3.1真实性条件 (17)1.3.2本征对易对称性 (17)1.3.3完全对易性对称性 (18)1.3.4空间对称性 (20)第二章 电磁波在非线性介质内的传播 (23)2.1介质中的波动方程一般形式 (23)2.2线性介质中单色平面波的波动方程 (23)2.3稳态情况下的非线性耦合波方程 (24)2.4瞬态情况下的非线性耦合波方程 (26)2.5门雷-罗威(Manley-Rowe)关系 (27)第三章 光学二次谐波的产生及光混频 (28)3.1光倍频及光混频的稳态小信号解 (28)3.2相位匹配技术 (29)3.3有效非线性系数 (43)3.4光倍频及光混频高转换效率时的稳态解 (46)3.5高斯光束的倍频 (47)3.6典型倍频激光器技术 (48)第四章 光学参量振荡及放大 (52)4.1引言 (52)4.2光学参量振荡的增益 (52)4.3光学参量振荡的阈值 (54)4.4光学参量振荡输出频率的调谐 (56)4.5典型光学参量振荡技术 (59)第五章 二阶非线性光学材料 (62)第六章 克尔效应与自聚焦 (65)6.1引言 (65)6.2克尔效应 (65)6.3自聚焦 (70)第七章 受激散射 (73)7.1引言 (73)7.2受激喇曼散射 (73)7.3受激布里渊散射 (79)第八章 光学相位共轭 (81)8.1相位共轭的特性 (81)8.2获得相位共轭波的非线性光学方法 (81)8.3非线性光学相位共轭的应用 (82)第九章光学双稳态 (83)9.1光学双稳态的理论 (83)9.2光学双稳态器件 (85)9.2光学双稳态器件的应用 (85)绪论非线性光学是一门光电子技术专业的专业基础课程,对于研究生深造和从事相关光电子专业的工作奠定理论基础。
本门课程的前期课程是物理光学、电动力学以及量子力学等基础学科。
非线性物理学是研究在物质间宏观强相互作用下普遍存在着的非线性现象,也就是作用和响应之间的关系是非线性的现象。
非线性物理现象包含在物理学的各个领域,形成了非线性力学、非线性声学、非线性热学、非线性电子学以及非线性光学等学科。
非线性光学是非线性物理学的一个分支,它是描述强光与物质发生相互作用的规律。
非线性光学在激光发明之后迅速发展起来,它所揭示的大量新现象极大地丰富了非线性物理学的内容。
非线性光学是现代光学的分支学科,基于自发辐射的普通光源的光学称为“传统光学”;基于受激辐射的激光光源的光学称为“现代光学”。
非线性光学与线性光学区别及其分类下面我们简单对比一下线性光学和非线性光学的不同,从而对非线性光学有一个初步的认识: 激光器问世以前,人们对于光学的认识主要限制于线性光学:1)光束在空间或介质中的传播是相互独立的,几个光束可以通过光束的交叉后继续独立的传播而相互不受其他光束干扰;2)光束在传播过程中,由于衍射、折射和干涉等效应,光束的传播方向发生变化,空间分布有有所变话,但是光频率没有变;3)介质的主要参数,如折射率、吸收系数等,与入射光强没有关系,只与频率有关;但是由于激光出现以后,人们对光学的认识发生了重要的变化。
1) 一束激光经过介质后,一束激光会出现一束或几束很强的新频率的光束,频率发生变换;2) 相互作用后,强度相互传递,一束光增强,另一束光强度减弱非线性光学与线性光学的主要区别 线性光学非线性光学 光在介质中传播,通过干涉、衍射、折射可以改变光的空间能量分布和传播方向,但与介质不发生能量交换,不改变光的频率一定频率的入射光,可以通过与介质的相互作用而转换成其他频率的光(倍频等),还可以产生一系列在光谱上周期分布的不同频率和光强的光(受激拉曼散射等)多束光在介质中交叉传播,不发生能量相互交换,不改变各自的频率 多束光在介质中交叉传播,可能发生能量相互转移,改变各自频率或产生新的频率(三波与四波混频)光与介质相互作用,不改变介质的物理参量,这些物理参量只是光频的函数,与光场强度变化无关光与介质相互作用,介质的物理参量如极化率、吸收系数、折射率等是光场强度的函数(非线性吸收和色散、光克尔效应、自聚焦)光束通过光学系统,入射光强与透射光强之间一般成线性关系 光束通过光学系统,入射光强与透射光强之间呈非线性关系,从而实现光开关(光限制、光学双稳、各种干涉仪开关)多束光在介质中交叉传播,各光束的相位信息彼此不能相互传递 光束之间可以相互传递相位信息,而且两束光的相位可以互相共轭(光学相位共轭)按照激光与介质的相互作用,可以把非线性光学效应分为以下两类。
1.被动非线性光学效应被动非线性光学效应的特点是:光与介质间无能量交换,而不同频率的光波间能够发生能量交换。
例如,倍频、三波混频、参量过程、四波混频、相位共轭……。
下图以倍频与四波混频为例说明被动非线性光学效应。
2.主动非线性光学效应主动非线性光学效应的特点是:光与介质间会发生能量交换,介质的物理参量与光场强度有关。
例如,非线性吸收(饱和吸收、反饱和吸收、双光子吸收等)、非线性折射(光克尔效应、自聚焦与自散焦、折射率饱和与反饱和等)、非线性散射(受激拉曼散射、受激布里渊散射等)、光学双稳性、光限制等。
下图以饱和吸收、光克尔效应与自聚焦为例说明主动非线性光学效应。
非线性光学特点及研究内容反映了介质在外场作用下的响应及对外场的反作用。
研究非线性光学现象的出发点,是研究介质的非线性极化规律,Bloembergen给出定义为:凡是介质对外加电磁场的响应不是外加电场振幅的线性函数的光学现象,均属于非线性光学效应的范畴。
主要研究内容两大类:1)光在非线性介质中传播时由于和介质发生非线性作用自身所受的影响;2)介质本身在光作用下的性质,由此可以推断介质内部的结构及其变化--非线性光谱学。
具体内容:z非线性电极化率的经典、半经典理论,以及电极化率的性质z光波在非线性介质中传播的基本方程z二阶非线性光学效应:二次谐波产生(SHG)、和频产生(SFG)、差频产生(DFG)、光学参量振荡(OPO),光学参量放大(OPA)z三阶非线性光学效应:三倍频(THG)、光克尔效应(OK)、四波混频(FWM)、双光子吸收(TPA)、饱和吸收(SA)、受激喇曼散射(SRS)、受激布里渊散射(SBS)、自聚焦(SF)、相干反斯托克斯喇曼散射(CARS)z瞬态相干光学效应z非线性光学领域中的分支内容:非线性光学相位共轭技术、光折变非线性光学、超短光脉冲非线性光学,光纤非线性光学非线性光学的发展非线性光学的发展简史1.非线性光学初期创立阶段(1961~1965)1961年,Franken实验发现红宝石激光的倍频;(1961年,Franken首次观察到SHG现象,这个实验揭开了非线性光学研究史上的第一页,尽管石英材料是正单轴晶体,在该实验中相位匹配条件并未满足,其转换效率很低(10-8),但SHG 效应的发现极大地促进了无机晶体材料在相干辐射产生中的应用,具有重要意义。
)1962~1964年,发现受激拉曼散射、受激布里渊散射;(1962年,Woodbury发现受激喇曼散射(SRS),最早使用的材料是硝基苯,随后在大量介质材料(气、液、固)中均发现,至今仍是一个热门研究课题(光学喇曼放大器FRA),以后又发现了SBS)1962~1965年,发现和频、差频、参量振荡、四波混频;(最早发现的三个是SHG、SRS和和频)1963~1965年,发现饱和吸收、反饱和吸收、双光子吸收;1964~1966年,发现自聚焦和自相位调制;1965年,实验发现光学相位共轭;1965年,N.Bloembergen出版《Nonlinear Opticas》一书。
1965年,Butcher推出“Nonlinear Optical Phenomena”一书。
1962年,Amstrong等在1962年发表了关于光场与物质的非线性相互作用的长篇论文(ABCD 论文),至今仍有一定参考价值。
2.非线性光学发展成熟阶段(1965~1985)1970~1985年,实现半导体量子阱、超晶格,发展半导体非线性光学;1975~1984年,实验发现光学双稳态和光学混沌,推动光计算研究;(1975年贝尔实验室的McCall、Gibbs和Venkatesan从置于法布里-珀罗干涉腔中的钠蒸气中首次测得了光学双稳态效应,以后的短短几年中,在气体、液体以及半导体等许多材料中都观察到了光学双稳态)1984~1987年,研究光纤中的非线性光学,实现光孤子激光器;(主要是理论上,包括时间域的孤子和空间域的孤子,亮孤子、暗孤子和时空孤子等;Mollenauer 和Stolen发明了第一个孤子激光器)1985年,实验获得光学压缩态,促进量子光学的发展;(首先是由贝尔实验室的Slusher等于1985年在钠蒸气中采用近简并四波混频方法获得)1984年,沈元壤出版《1he Principles 0f Nonlinear Optics》一书。
(与非线性光学研究的蓬勃发展和深入相配合,在这20年中,大量的非线性光学专著得到出版,其中关于非线性光学的基本原理和研究工作比较全面总结的则首推Y.R.Shen的“The Principles of Nonlinear Optics”)非线性光学材料在这20年有了重大进展,中国科学家在无机非线性晶体的研究中取得的成绩令世人瞩目。
3.非线性光学初步应用阶段(1985年~今)1985~1987年,新型非线性光学晶体BBO和LBO的发现,推动ps和fs瞬态光学;1987年,开始研究有机材料激发态非线性光学,推动光限制器研究;1987年,光子晶体的提出,推动了非线性光子晶体理论与器件的研究;1989年,掺铒光纤放大器的发明,推动了光纤通信的发展;90年代初,光孤子通信实验成功,推动孤子通信发展;90年代中,DWDM光通信技术的发展,对波长转换器、光开关、拉曼放大器等非线性光学器件提出需求;90年代末,完成远程量子信息传输实验,促进量子通信技术发展。