当前位置:
文档之家› 无人驾驶汽车技术---环境感知技术介绍
无人驾驶汽车技术---环境感知技术介绍
车载单目视觉运动物体检测
车载双目立体视觉越野环境感知
优点:信息量丰富、实时性好、体积小 、能耗低。 缺点:易受光照环境影响、三维信息测量精度较低。
2. 激光传感:基于激光雷达获取车辆周边环境两维或三维 距离信息,通过距离分析识别技术对行驶环境进行感知。
12 10 8 6 4 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
智能车辆环境感知技术
Environment Perception Technology of Intelligent Vehicle
引言 Introduction
当前,从陆地到天空,从海洋到宇宙,人们正在开发
各种各样的智能化载运工具为人类的文明发展服务。
实现地面车辆的智能化乃至无人驾驶是车辆工程领域
第二章 智能车辆环境感知技术概述 Introduction to E.P.Technology
一、环境感知目的-Purpose
通过性:基于自身行驶性能和共识规则,能实时、可靠、
准确识别并规划出可保证规范、安全、迅速到达目的地 的行驶路径;
安全性:在行驶过程中,能够实时、准确识别出行驶路
径周边对行驶安全可能存在安全隐患的物体,为自身采 取必要操作以避免发生交通安全事故;
四、智能车辆构成-Construction
1. 车辆自检监控系统
该系统通过实时获取和处理车辆状况传感器的输入信息 如电压、电流、温度、压力、油耗、转向、制动、加速、 停车、排放等,诊断车辆驾驶是否处于危险状态或具有潜 在的危险,并将诊断结果信息提供给驾驶员或车辆自动控 制系统,以便为做出正确的车辆控制决策提供依据。
灰度值:景物明暗程度经光电耦合元件产生电压模拟信
号并经过A/D 转换生成当量数字信号,通常CCD采用的 是 8 bit A/D转换,因此各像素点明暗程度分为0 - 225 共 256个等级,0 代表该像素点最暗,255 代表该像素点最 亮,因此像素点(x ,y ) 的具体数值大小也称为该像素点 的灰度值或灰度级;
信息、可实现车辆间信息共享、对环境干扰不敏 感。 缺点:可用于车辆自主导航控制的信息不够直接、实时 性不高、无法感知周边车辆外其它物体信息。
5. 融合传感:运用多种不同传感手段获取车辆周边环境多 种不同形式信息,通过多信息融合对行驶环境进行感知。
优点:能够获取丰富的周边环境信息、具有优良的环境
景物
镜头
CCD
图像卡
计算机
计算机视觉系统构成
构成计算机视觉系统的主要部件
二、成像原理-Imaging principle
镜头经过聚焦将目标景物根据小孔成像原理投射到CCD
电荷耦合靶面器件上;
x
O
A D E FGຫໍສະໝຸດ H 0yB
C
智能车辆视觉成像原理示意图
CCD电荷耦合靶面由多个阵列式光电耦合元件构成,其
性、安全性的其它各种移动或静止物体的识别;各种交 通标志的识别;
驾驶状态:包括驾驶员驾驶精神状态、车辆自身行驶状
态的识别;
驾驶环境:包括路面状况、道路交通拥堵情况、天气状
况的识别。
三、环境感知方法-Method
1. 视觉传感:基于机器视觉获取车辆周边环境两维或三维 图像信息,通过图像分析识别技术对行驶环境进行感知。
优点:能够以较高精度直接获取物体三维距离信息、对
光照环境变化不敏感、实时性好、体积较小。 缺点:无法感知无距离差异的平面内目标信息、国外成 熟产品对我国禁运而难以获得。
4. 通讯传感:基于无线、网络等近、远程通讯技术获取车 辆行驶周边环境信息。
优点:能够获取其它传感手段难以实现的宏观行驶环境
2. 车辆行驶环境信息获取系统 该系统基于车辆自身传感信息获取系统、通用技术平台 和通信信息系统,获取车辆外部周边物体状态、公路状态、 天气、车流、电子地图、停车场等信息,并将这些信息提 供给驾驶员或车辆自动控制系统。
3. 车道状态数据处理系统 该过程对所输入的各种车载及道路传感器的数据进行有 效处理,为车辆控制过程提供车辆所在车道、车辆在车道 上的位置、车辆与车道的距离偏差及方位偏差等信息。 4. 车辆辅助驾驶接口系统
基于自身和外部信息,能够确认当前位置、规划目标 路线、控制自身按规划路线行驶、安全准时到达目的 地的机动车辆。 自身具有驾驶员的部份、全部或尚不具备的驾驶行为 能力的机动车辆。
二、智能车辆功能-Function
1. 能够确认自身的当前位置,根据行驶目标及途中情况, 规划、修改行车路线。
2. 能够可靠识别行车路线,并可通过自动转向控制使自 身按规定路线准确稳定行驶。
6. 智能车辆系统构成示意图
五、智能车辆关健技术-Key technology
环境感知技术(Environment Perception)
路径规划技术(Path Plan)
导航控制技术(Navigation Control) 避障防撞技术(Obstacle Detection & Avoidance)
制其开闭程度,进而控制外界光照投射到CCD电荷耦合 镜面的强度大小,显然光圈设定的大小直接影响景物成 像的明暗程度。镜头上设置的机械式光圈可称之为物理 光圈。通常物理光圈参数在1-16 之间,该值越小,代表 光圈开度越大,通常称之为大光圈,反之亦然。因此当 景物光照很强时,应选择数值大的小光圈;当景物光照 很暗时,应选择数值小的大光圈。光圈选择应有利于增 强目标与背景的灰度对比度。
经济性:为提高车辆高效、经济地行驶提供参考依据; 平顺性:为车辆平顺行驶提供参考依据;
二、环境感知对象-Target
行驶路径:对于结构化道路而言,包括行车线、道路边
缘、道路隔离物、恶劣路况的识别。对于非结构化道路 而言,包括车辆欲行驶前方路面环境状况的识别和可行 驶路径的确认;
周边物体:包括车辆、行人、地面上可能影响车辆通过
能根据光照强弱产生不同强度的电流,然后电流被转换 为当量电压;
图像采集卡能够逐行逐列地将每个光电耦合元件产生的
电压模拟信号经过A/D 转换将其转换成数字信号并传输 给计算机;
CCD光电耦合元件及图像采集卡
计算机通过应用软件生成目标景物的数字图像,正是由
于景物图像的数字化,才使得计算机能够进行各种图像 处理、分析和识别。
目标景物的数字图像
三、主要参数-Key specification
像素点:每个光电耦合元件产生的电压信号经过A/D 转
换将其转换成数字信号形成一个像素,由于光电耦合元 件按行列依次排列,其信号的数字转换也按相同顺序依 次进行,转换结果数据被计算机按两维数组(x,y ) 形式 加以存储,数组下标值 x 代表该像素所在行位置, y 代 表该像素所在列位置 ,因此一对数组(x,y )对应一个像 素点 ;
像素点及灰度值概念示意图
分辨率:显然,CCD电荷耦合靶面光电耦合元件构成的
行列多少直接影响对景物成像的精细程度,通常将光电 耦合元件构成的行列多少称为其成像分辨率。对相应的 数字图像而言,图像分辨率体现为在两维数组(x ,y )的 大小。 例如,1024(H)×1024(V)CCD的分辨率显然要高 于512(H)×584(V) CCD的分辨率。高分辨率CCD虽然可 以获取更为精细的图像,但由于像素点的大量增加,也 会严重降低图像处理的实时性。对于智能车辆环境感知 而言,通常640(H)×480(V)的分辨率已能满足要求。
物理光圈相同、外界光照不同时电子光圈调节效果
焦距:焦距是指镜头景物聚焦点到成像平面即透镜中心
的距离 ,通常用 f 表示,单位为mm ,如8mm 、12mm、 16mm、25mm等。焦距长短与景物成像大小成正比,对 同一物体 ,焦距越长,其成像越大,焦距越短,成像越 小 。 镜头焦距与视场角成反比 ,焦距越长 ,视场角越 小,焦距越短,视场角越大。镜头通常标有焦距值 ,此 外,许多CCD 用镜头也具有通过手动微调焦距的功能。
信息通讯技术(Information Communication)
乘员安保技术(Passenger Safety) 人机交互技术(Human-machine Communication)
状态监测技术(Condition Monitoring)
调度管理技术(Accommodating & Management)
该系统提供了驾驶员可以用于启动、监视和终止车辆自 动控制操作的接口。该接口可接收驾驶员控制请求、车辆 行驶环境、车辆自检、车辆控制状态反馈等信息,对车辆 控制方式作出选择,并将选择结果提供给车辆控制过程或 需要此信息的其它过程。 5. 车辆控制系统 该系统提供各种水平的车辆控制功能。它通过接收车辆 控制方式选择、车辆自检、车辆自身及周边车辆行驶状态、 车辆行驶环境等信息,为实现车道跟踪、车距保持、换道、 巡航、定位停车等功能提供各种必要的基本操作。
适应能力、为安全快速自主导航提供可靠保障。 缺点:感知系统过于复杂、难于集成、造价昂贵、实用 性差。
第三章 视觉系统概述 Introduction to Vision System
一、系统构成-System configuration
一套完整的视觉系统通常包括CCD、镜头、图像卡、计 算机等,系统构成如下图所示。
光圈适中
光圈过大
光圈过小
电子光圈:在CCD内部,通过电路可以控制外界光照投
射到CCD电荷耦合镜面的时间长短,进而达到光照强度 大小的控制目的,通常也称其为电子快门。电子光圈参 数需经过程序设定调节。电子光圈对于变光照条件下实 现在线实时视觉环境感知具有重要应用价值。需要提及 的是,电子光圈的大小影响CCD图像获取速度。
帧频:CCD 在1s时间内连续获取数字图像的帧数,其直