1.3如果微波激射器和激光器分别在λ=10μm ,=5×10-1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少?解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则:由此可得: 其中346.62610J s h-=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。
所以,将已知数据代入可得:=10μm λ时:19-1=510s n ⨯ =500nm λ时:18-1=2.510s n ⨯=3000MHz ν时: 23-1=510s n ⨯1.4设一光子的波长=5×10-1μm ,单色性λλ∆=10-7,试求光子位置的不确定量x ∆。
若光子的波长变为5×10-4μm (x 射线)和5×10-18μm (γ射线),则相应的x ∆又是多少mm x m m m x m m m x m h x hx h h μμλμμλμλλμλλλλλλλλλλ111718634621221051051051051051051055/105////0/------⨯=⨯=∆⇒⨯=⨯=⨯=∆⇒⨯=⨯==∆=∆⇒⨯=∆=∆P ≥∆≥∆P ∆∆=P∆=∆P =∆P +P∆=P1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S -1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少?cP nh nh νλ==P P n h hcλν==1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。
又如果光强I=10W/mm2,试求受激跃迁几率W10。
2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。
习题2.2一块折射率为η,厚度为d的介质放在空气中,其两界面分别为曲率半径等于R的凹球面和平面,光线入射到凹球面。
求:(1)凹球面上反射光线的变换矩阵;(2)平面界面处反射,球面界面处折射出介质的光线变换矩阵;(3)透射出介质的光线的变换矩阵。
2.4二氧化碳激光器,采用平凹腔,凹面镜的曲率半径R=2m,腔长L=1m。
求出它所产生的高斯光束的光腰大小和位置,共焦参数及发散角。
2.6某高斯光束的ω0=1.2mm ,λ=10.6μm 。
令用f =2cm 地凸透镜来聚焦。
当光腰与透镜的距离分别为10m 、1m 、0时,出射高斯光束的光腰大小和位置各为多少?分析所得的结果。
解:入射高斯光束的共焦参数又已知22.010m F -=⨯,根据得l 10m 1m 10cm 0 l '2.00cm 2.08cm 2.01cm 2.00cm 0ω'2.40μm 22.5μm 55.3μm 56.2μm从上面的结果可以看出,由于f 远大于F ,所以此时透镜一定具有一定的聚焦作用,并且不论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。
2.7已知高斯光束的ω0=0.3mm ,λ=0.6328μm 。
试求:(1)光腰处;(2)与光腰相距30cm 处;(3)无穷远处的复参数q 值。
解:入射高斯光束的共焦参数根据0()q z z q z if=+=+,可得束腰处的q 参数为:(0)44.7cm q i =与束腰相距30cm 处的q 参数为:(30)(3044.7)cm q i =+ 与束腰相距无穷远处的q 参数为:e m R (),I ()44.7cm q q →∞=2.8如习题图2.8,已知:ω0=3mm ,λ=10.6um , z 1=2cm ,d=50cm, f 1=2cm, f 2=5cm 。
求:ω02和z 2,并叙述聚焦原理。
习题2.8图200.427mf πωλ==2220022()()()l F F l F l F f l F f ω-'=+-+'=-+2044.7cmf πωλ==2.11一染料激光器输出激光束的波长λ=0.63μm,光腰半径为60μm。
使用焦距为5cm的凸透镜对其聚焦,入射光腰到透镜的距离为0.50m。
问:离透镜4.8cm处的出射光斑为多大?3.1试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
3.2今有一球面腔,R1=1.5米,R2=-1米,L=80厘米。
试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。
解:该球面腔的g参数为由此,120.85g g =,满足谐振条件1201g g <<,腔的稳定性因此,该腔为稳定腔。
两反射镜距离等效共焦腔中心O 点的距离和等价共焦腔的焦距分别为根据计算得到的数据,在图中画出了等价共焦腔的具体位置。
3.3反射镜曲率半径R =100cm ,腔长L =40cm 的对称腔,相邻纵模的频率差为多少?3.4设圆形镜共焦腔长L =1m ,试求纵模间隔Δνq 和横模间隔Δνm 、Δνn 。
若振荡阈值以上的增益线宽为60MHz ,试问:是否可能有两个以上的纵模同时振荡,为什么?1110.47Lg R =-=221 1.8Lg R =-=211212121212212()1.31m()()()0.51m()()()()()0.50m [()()]L R L z L R L R L R L z L R L R L R L R L R R L f L R L R -==--+---==--+---+-==-+-1R 2R 等价共焦腔2z 1z OLf f3.5某共焦腔氦氖激光器,波长λ=0.6328um,若镜面上基模光斑尺寸为0.5mm,试求共焦腔的腔长,若腔长保持不变,而波长λ=3.39um,问:此时镜面上光斑尺寸多大?3.6考虑一台氩离子激光器,其对称稳定腔的腔长L=1m,波长λ=0.5145um,腔镜曲率半径R=4m,试计算基模光斑尺寸和镜面上的光斑尺寸。
3.7某二氧化碳激光器,用平-凹腔,L=50厘米,R=2米,2a=1厘米,λ=10.6微米。
试计算ω01、ω02、ω0、θ各为多少?4.1 静止氖原子的3S 2-2P 4谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 和0.8c 的速度向着观察者运动,向其中心波长分别变为多少? 根据公式(激光原理P136)ccυυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)4.2 在激光出现以前,Kr 86低气压放电灯时很好的单色光源。
如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性Δλ/λ=10-8的氦氖激光器比较。
解:根据相干长度的定义可知,ν∆=c L c。
其中分母中的是谱线加宽项。
从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。
根据P138页的公式4.3.26可知,多普勒加宽:2107)(1016.7MTDνν-⨯=∆因此,相干长度为:cm MT cc L Dc 4.89)(1016.72107=⨯=∆=-νν根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:cm c c L c 632810108.632892=⨯⨯=∆=∆=∆=∆=-λλλλλλλνν可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。
说明激光的相干性很好。
4.3 考虑某二能级工作物质,E 2能级自发辐射寿命为τs 。
无辐射跃迁寿命为τnr 。
假定在t =0时刻能级E 2上的原子数密度为n 2(0),工作物质的体积为V ,自发辐射光的频率为ν,求(1) 自发辐射光功率随时间t 的变化规律;(2) 能级E 2上的原子在其衰减过程中发出的自发辐射光子数。
(3) 自发辐射光子数与初始时刻能级E 2上的粒子数之比η2,η2为量子产额。
解:(1) 在现在的情况下有可以解得:11()22()(0)s nrtn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为: (2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:222()()s nrdn t n ndt ττ=-+11()22()(0)s nrtssn h VP t h V n eττννττ-+==2sn dn Vdtτ=11()22200()(0)(0)|1111()s nr t ss s s nr s nrn t n Vn V n Vdt e τττττττττ-++∞+∞-===++⎰22111(0)()ss nrn n V ητττ==+无辐射跃迁导致能级2的寿命偏短,可以由定义一个新的寿命τ,这样4.4 设粒子数密度为n的红宝石被一矩形脉冲激励光照射,其激励跃迁几率可表示为(如习题图4.4所示)求激光上能级粒子数密度n2(t),并画出相应的波形。
5.1何谓增益饱和?均匀加宽工作物质与非均匀加宽工作物质的增益饱和基本特征是什么?增益饱和: 在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。
由于光强I 仅改变粒子在上下能级间的分布值,并不改变介质的密度、粒子的运动状态以及能级的宽度,由于每个粒子对谱线不同的频率处都有贡献,所以当某一频率的受激辐射消耗了激发态的粒子时,也就减少了对其它频率信号的增益,介质的光谱线型不会改变,线宽不会改变,增益系数随频率的分布也不会改变,光强仅仅使增益系数在整个线宽范围内下降同样的倍数而对非均匀加宽型介质它只能引起某个范围内的光波的增益系数下降,并且下降的倍数不同。
5.2 从物理实质上说明在均匀加宽工作物质中,当入射光频率为中心频率时增益饱和效应最强,而入射光频率偏离中心频率越大时饱和效应越弱。
入射光引起强烈的受激发射使激光上能级粒子数减少。
受激辐射几率与入射光强成正比,当光强足够大时,强烈的受激辐射使反转粒子数减少,而使增益系数随光强的增大而下降。