计量经济学所有检验方法一、拟合优度检验可决系数TSS RSS TSS ESS R -==12 TSS 为总离差平方和,ESS 为回归平方和,RSS 为残差平方和 该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验) 方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1: βj 不全为0统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F 分布,给定显著性水平α,可得到临界值F α(k,n-k-1),由样本求出统计量F 的数值,通过F>F α(k,n-k-1)或F ≤F α(k,n-k-1)来拒绝或接受原假设H 0,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t 检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi =0 (i=1,2…k );H1:βi ≠0给定显著性水平α,可得到临界值t α/2(n-k-1),由样本求出统计量t 的数值,通过 |t|> t α/2(n-k-1) 或 |t|≤t α/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii ii ie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。
五、异方差检验1. 帕克(Park)检验与戈里瑟(Gleiser)检验 试建立方程:iji i X f e ε+=)(~2 或iji i X f e ε+=)(|~|选择关于变量X 的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。
如:帕克检验常用的函数形式:ie X Xf jiji εασ2)(=或iji i X e εασ++=ln ln )~ln(22 若α在统计上是显著的,表明存在异方差性。
Glejser 检验类似于帕克检验。
Glejser 建议:在从OLS 回归取得误差项后,使用e i 的绝对值与被认为密切相关的解释变量再做LS 估计,并使用如右的多种函数形式。
若解释变量的系数显著,就认为存在异方差。
如下函数形式:2. 戈德菲尔德-匡特(Goldfeld-Quandt)检验G-Q 检验以F 检验为基础,适用于样本容量较大、异方差递增或递减的情况。
G-Q 检验的步骤:①将n 对样本观察值(Xi,Yi)按观察值Xi 的大小排队②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2③对每个子样分别进行OLS 回归,并计算各自的残差平方和④在同方差性假定下,构造如下满足F 分布的统计量)12,12(~)12(~)12(~2122------------=∑∑k c n k c n F k c n ek cn eF ii⑤给定显著性水平α,确定临界值F α(v1,v2),若F> F α(v1,v2),则拒绝同方差性假设,表明存在异方差。
3、怀特(White )检验怀特检验不需要排序,且适合任何形式的异方差ii i i X X Y μβββ+++=22110做如下辅助回归ii i i i i i i X X X X X X e εαααααα++++++=215224213221102~在同方差假设下 R2为辅助方程的可决系数,h 为辅助方程解释变量的个数。
ii i i i i i ii i i i ii i X b b e X b b e X b b e X b b e X b b e μμμμμ++=++=++=++=++=210101010101六、序列相关检验 1. 回归检验法以t e ~为被解释变量,以各种可能的相关量,诸如以1~-t e 、2~-t e 、2~t e 等为解释变量,建立各种方程:tt t e e ερ+=-1~~tt t t e e e ερρ++=--2211~~~ …如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。
2. 杜宾-瓦森(Durbin-Watson )检验法杜宾和瓦森针对原假设:H 0: ρ=0,即不存在一阶自回归,构如下造统计量:∑∑==--=nt tnt t tee eW D 12221~)~~(..(1)计算DW 值(2)给定α,由n 和k 的大小查DW 分布表,得临界值dL 和dU (3)比较、判断若 0<D.W.<dL 存在正自相关 dL<D.W.<dU 不能确定 dU <D.W.<4-dU 无自相关 4-dU <D.W.<4- dL 不能确定 4-dL <D.W.<4 存在负自相关 当D.W.值在2左右时,模型不存在一阶自相关。
3. 拉格朗日乘数(Lagrange multiplier )检验 拉格朗日乘数检验克服了DW 检验的缺陷,适合于高阶序列相关以及模型中存在滞后被解释变量的情形。
对于模型iki k i i i X X X Y μββββ+++++= 22110如果怀疑随机扰动项存在p 阶序列相关:tp t p t t t εμρμρμρμ+++=--- 2211 GB 检验可用来检验如下受约束回归方程tp t p t kt k t t X X Y εμρμρβββ+++++++=-- 11110约束条件为: H 0: ρ1=ρ2=…=ρp =0约束条件H0为真时,大样本下 其中,n 、R2为如下辅助回归的样本容量和可决系数给定α,查临界值χα2(p),与LM 值比较,做出判断,实际检验中,可从1阶、2阶、…逐次向更高阶检验。
)(~22p nR LM χ=tp t p t kt k t t e e X X e ερρβββ+++++++=--~~~11110七、多重共线性检验 1.综合统计检验法当模型的拟合优度(R 2)很高,F 值很高,而每个回归参数估计值的方差Var(βj ) 又非常大(即t 值很低)时,说明解释变量间可能存在多重共线性。
2.简单相关系数法求出任意两个解释变量的简单相关系数,若接近于1,则说明两变量存在较强的多重共线性。
3.判定系数检验法统计量F j =R j 2/(k-1)/(1-R j 2)/(n-k)服从自由度为(k-1 , n-k)的F 分布,原假设为X j 与其他解释变量间不存在显著的线性关系,给定显著性水平α,通过计算的F 值与相应的临界值的比较来判断。
4.逐步回归法以Y 为被解释变量,逐个引入解释变量,构成回归模型,进行估计。
如果拟合优度变化显著,则说明新引入的变量是一个独立解释变量;如果拟合优度变化很不显著,则说明新引入的变量不是一个独立解释变量,即它与其他变量之间存在共线性的关系。
八、格兰杰因果关系检验对两变量Y 与X ,格兰杰因果关系检验要求估计:ti t mi i m i i t i t Y X Y 111μβα++=-==-∑∑ (1)ti t mi i m i i t i t X Y X 211μδλ++=-==-∑∑ (2)可能存在有四种检验结果:(1)X 对Y 有单向影响,表现为(*)式X 各滞后项前的参数整体不为零,而(**) Y 各滞后项前的参数整体为零;(2)Y 对X 有单向影响,表现为(**)式Y 各滞后项前的参数整体不为零,而(*)X 各滞后项前的参数整体为零;(3)Y 与X 间存在双向影响,表现为Y 与X 各滞后项前的参数整体不为零; (4)Y 与X 间不存在影响,表现为Y 与X 各滞后项前的参数整体为零。
格兰杰检验是通过受约束的F 检验完成的。
如:针对ti t mi i m i i t i t Y X Y 111μβα++=-==-∑∑中X 滞后项前的参数整体为零的假设(X 不是Y 的格兰杰原因) 分别做包含与不包含X 滞后项的回归,记前者与后者的残差平方和分别为RSSU 、RSSR ;再计算F 统计量:)/(/)(k n RSS mRSS RSS F U U R --=k 为无约束回归模型的待估参数的个数如果: F>F α(m,n-k) ,则拒绝原假设,认为X 是Y 的格兰杰原因。
九、时间序列平稳性检验 1.DF 检验随机游走序列 X t =X t-1+μt 是非平稳的,其中μt 是白噪声。
而该序列可看成是随机模型X t =ρX t-1+μt 中参数ρ= 1时的情形。
也就是说,我们对式 X t =ρX t-1+μt (1) 做回归,如果确实发现ρ=1,就说随机变量X t 有一个单位根。
可变形式成差分形式:X t =(ρ-1)X t-1+μ t =δX t-1+ μt (2) 检验(1)式是否存在单位根ρ=1,也可通过(2)式判断是否有 δ=0。
检验一个时间序列Xt 的平稳性,可通过检验带有截距项的一阶自回归模型 X t =α+ ρX t-1 +μt (*)中的参数ρ是否小于1。
或者:检验其等价变形式Xt=α+ δX t-1+μt (**)中的参数δ是否小于0 。
零假设 H 0:δ= 0;备择假设 H 1:δ< 0 可通过OLS 法估计Xt=α+ δX t-1+μt 并计算t 统计量的值,与DF 分布表中给定显著性水平下的临界值比较:如果:t < 临界值,则拒绝零假设H0:δ= 0 ,认为时间序列不存在单位根,是平稳的。
2.ADF 检验 在DF 检验中,实际上是假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。
但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,为了保证DF 检验中随机误差项的白噪声特性,Dicky 和Fuller 对DF 检验进行了扩充,形成了ADF (Augment Dickey-Fuller )检验。
ADF 检验是通过下面三个模型完成的:模型1: t mi it i t t XX X εβδ+∆+=∆∑=--11 (*)模型2: t mi it i t t XX X εβδα+∆++=∆∑=--11 (**)模型3: t mi it it t XX t X εβδβα+∆+++=∆∑=--11 (***)模型3 中的t 是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。