点群空间群和晶体结构介绍
交换律,即
ai ·bj=bj ·ai
两个群的直接积G以 G G AGB 表示:
G G AG B {a1b1, a1b2 ,...a1bm ,...a2bm ,...anbm}
G是n×m阶群。群的直接积是扩大群的一种最简单的方法。
子群、母群及生殖元素
子群:若群GA的全部元素是群G中的元素,并且两者的结合律 相同,称GA是群G的子群,而G是群GA的母群。如果对称元素GA和 GB能够得到G的全部对称元素,则称这两个对称元素为群G中的两 个生殖元素(Generating Element).
立方系各晶类的投影图
在(e)所示:在投影面上{111)位置4个3轴,单胞3个轴为4次轴, 过单胞3个轴两两构成3个镜面及6个{110}的镜面。一般位置点的等 效点系共有48个点。
5种点群中(e) 是该晶系的全对称点群。从这5种点群可以看 到立方晶系不一定有4次轴,例如点群(a) 和(b) 就没有4次轴。另 外,立方晶系并不一定总是具有最高的对称性,例如四方晶系的 点群D4h-4/mmm(16阶)和六方晶系的点群D6h-6/mmm(24阶)就 比立方晶系的点群T-23(12阶)的对称性高。
上述的两种导出方法有一个共同的缺点,就是导出点群后, 还要再确定每一种点群分属于哪一种晶系。
C)用推导7种晶系的方法也可以推导出32种点群。对每一种晶 系在保证晶系的对称性不变的前提下,加入可能的对称操 作,这种导出方法的优点在于使点群与晶系的关系十分明 确。
下面将用这种方法导出32种点群。 在导出点群时应该注意到在每一个点群中都有主导生
群的阶数相等。
在极射投影时,点群中所有对称操作都经过投影基圆中心。
3.3点群的推导方法
通过对晶体外形的研究,人们发现共有32种晶态,每一种晶态 对应着一种点群。可以用不同方法导出32种点群。
A)从五种循环群1(C1)、2(C2)、3(C3)、4(C4)、6(C6)开始,再在 每种循环群上加进各种新的对称操作,最终导出32种点群。 例如:
以合适的取向放到阵点上的含义
如果希望每个阵点都具有正交对称性,那么放置物体时就 必须使它的镜面和2次轴沿单胞某一轴方向放置。这样导出的晶 体 结 构 , 才 会 既 有 平 移 对 称 性 又 能 使 任 何 一 个 阵 点 都 有 C2vmm2 的对称性。
这两种类型的对称操作正是描述整个晶体结构对称性的基本操作。
这种点群符号和其对称操作符号相同。因为C1-1 点群只有 一种单一对称操作,所以,尽管点群符号和对称操作符号相 同也不会引起混乱。这种点群的生殖对称元素就是C1(E),生 殖矩阵就是恒等操作的变换矩阵。这种点群的极射投影图如 附图1(a)所示。
附图1
在图中没有标出对称元素的投影,因为
任何方向都可以是1次轴,故不能标出它的位 置。投影图中的一般位置点的等效点只有一
附图1
除了上述两种点群,我们不可能再 增加任何对称操作而使物体仍属于三斜 晶系,所以,属于三斜晶系的晶类只有 两种。 Ci-1点群的对称操作最多(不严 格地说它具有最高的对称性),称这种 点群为该晶系的全对称点群。
从上述两种点群的极射投影再一次说明在投影图上一般位置 的正规点系的数目和点群具有对称操作的数目相同,即与点群 的阶数相同。
3.1 群的概念和基本性质
群是某些具有相互联系规律的一些元素的组合,群的元素可 以是字母、数字、对称操作、点阵等。
任何一个群都应具有以下4个基本性质:
封闭性(Closure)
群G的n个不等效元素中,任两个元素组合或一个同类元素自 身组合都是群中的一个元素。
群中所有元素都遵循组合律,但组合次序不能变。
石英结构中的六次螺旋轴
石英的基本结构可以看成是硅氧四面体在三和六次螺旋轴 附近的螺旋链。左边为其中一个三次螺旋,右方显示的是螺旋 连接构成晶体框架。
滑移面
由镜面和平移组合产生的对称元素称为滑移反映面,简称滑
移面。滑移面的基本操作可表示为{m·t},其对称群为{m·t}p,P=0
,±1,±2……。 晶体中有3种不同的滑移面,即轴向滑移、对角线滑移(又称
螺旋轴
螺旋轴螺旋轴的国际符号为ns,其中n是旋转阶次,s是小于n 的整数,平移量是s/n单位平移矢量。当对称图像绕螺旋轴ns旋转 2π/ns角度,继而沿轴的平行方向平移s/n单位平移矢量的距离后使 对称图像的等同部分重合,它就是一种对称操作。
这种复合操作的两种操作先后次序是不影响最后结果的。和旋
转轴一样,螺旋轴次只可能有1、2、3、4和6五种,相应的旋转角
空 间 群 可 分 为
230种
点式空间群(symmorphic space Group) 对称操作全部作用于同一个公共点上的,不包
含任何一个比初基平移还要小的平移τ。 73种
非点式空间群(Nonsymmorphic space Group)
157种
对称操作全部作用于同一个公共点上的,至少 包含一个比初基平移还要小的平移τ。
为360°、180°、120°、90°和60°。旋转后的平移矢量t=ts,t为 与平移矢量t相平行的基矢。
螺旋轴ns的基本对称操作可表示为{(2π/n)·T(s/n)t)}p,其中P=0, ±1,±2……。
S<(n/2)-右螺旋 S=(n/2)-中性螺旋轴
(n/2)<S<n-左螺旋
二次螺旋轴
所有可能的晶体学螺旋轴操作
n滑移)和金刚石滑移。 所有滑移中,都是经镜面操作后再平移单胞周期的某一分数
的距离。和螺旋轴的操作相同,镜面和平移两步操作的先后次序 是不重要的。
图(a)镜面垂直于a轴,平移矢量t=b/2,这种轴向滑移称为b滑移
图(b)表示镜面垂直于c轴,平移矢量是(a+b)/2的n滑移。
3.4.3 空间群的推导方法
有唯一的单位元素(E)。它和群中任何一个元素的组合是元素 本身。
群中每一个元素,必有一个相应的逆元素(Inverse Element) 使得两者相乘为其本身。
以一个4次对称轴C4的全部操作所构成的群G来说明4个基本性 质。
两个独立群的直接积
设有两个独立群GA和GB,其中GA是n阶群,GB是m阶群。两个 群中除了恒等元素外,没有其它共有元素,两个群的元素间相乘有
在垂直于循环群对称轴的方向加上2次对称轴;在垂直于循环 轴的方向或包含循环轴加上镜面;用非真旋转轴代替真旋转轴等。 用这些操作或者这些操作的某一种组合可能会得出一些新的点群。
B) 首先找出仅由真旋转构成的所有群,这种纯旋转结晶学点群 共有11种。然后在这11种点群的基础上,把每一种都加上反演对 称操作,又获得11种点群。由这11种中心对称点群,又可以找出 与11种纯旋转点群不同的10种非中心对称子群,最后导出了32种 点群,是一种最快和最好的方法。
(a)正交晶系的Pmm2空间群
图 (a)是正交点阵的阵
点 上 放 上 对 称 性 为 C2vmm2的物体的空间群的俯
视图。
图中画出单胞的轮廓,原点选在左上角,a轴指向页底,b 轴指向右,c轴从页面指出来。以圆圈排列来表示它的对称性 ,在左边的图中每个阵点的对称性用一般位置点的等效点系表 示。其中每一个圆圈既可以代表晶体中单个原子,也可以代表 原子集团。在右边的图上给出对称元素的配置。在原点有一个 沿c方向的2次轴和2个镜面(用粗线表示)。P-初基点阵,mm2基本操作。非基本操作(附加的2次轴和镜面)未表示。
材料结构与性能
授课教师:刘胜新 (18课时)
第三章点群、空间群和晶体结构
引言
群(Group)是某些具有相互联系规律的元素的组合.晶体对称 操作符合一定规律的组合,这种群即是对称群(Symmetry Group )。晶体外形是一个有限对称图象,对其进行对称操作时,至少 保持一点不动,即这些操作是点对称操作,它们组成点对称群, 称为点群(Point Group)。 讨论点对称操作有哪些可能的组合方式,并对晶体做进一步划分。
3.4.1 点式空间群
通常获得点式空间群的办法就是把32种点群和14种布喇菲 点阵直接组合,即每一种点群都可以同所属晶系中可能有的布 喇菲点阵P、I、F或C相结合。
强调组合是由同属一种晶系的点群和布喇菲点阵组合,因为 不属于同一种晶系的点群和布喇菲点阵组合是不相容的。
正交晶系包含有全部可能的布喇菲P、I、F和C点阵,所以 以正交晶系为例来讨论如何以上述的方式组合来导出空间群。
把32种点群的符号、对称组合、主导生殖元素的 方向、阶数以及点群导出方法综合列于附表1中,把 它们的极射投影图综合列于附表2中,其中四方晶系 采用第二定向的。在附表2中的每一方格,中间的圆 是极射投影图,左上角是国际符号,右上角的i表示该 点群具有中心对称,左下角给出这个点群的基本对称 元素,右下角是国际完全符号。
空间群的全部对称操作是由点对称操作和平移操作组成。
以{D/t)表示空间操作算符,则空间操作对一般位矢作用可表
示为:
D是点对称操作的变换算符
t是平移操作
• 点阵的空间对称操作中除了使单胞平移到每一个其它单胞 的操作(对于有限群操作数为一数值N,对于无限群操作数 则为无穷大)之外,还有使初基单胞所含的实体(晶体结构 中的结构基元)变换到本身的h个对称操作,所以,空间群 共有Nh个对称操作。
•
其中一组特殊操作是h个对称操作与平移群恒等操作
(即零平移)的组合,即这个组合只有h个对称操,这h 个对
称操作称为空间群的基本操作。而h个对称操作和初基点
群平移(非零平移)的组合称为空间群的非基本操作。
在某些空间群的对称操作中,其中有可能比初基点群平移小的 平移t,它与旋转或镜面结合称之为螺旋操作或滑移操作。
附表1 32种点群
2 32
附
表 极
射 种投 点影 群图 投 影
续
附
表极
2 32
射
种 点 群