当前位置:文档之家› 机房集中监控标准系统

机房集中监控标准系统

融智机房集中监控系统目录一、背景与需求 (1)二、系统概述 (2)一、系统设计原则 (4)3.1 可靠性、稳定性原则 (4)3.2 安全性原则 (4)3.3 实用性、先进性、便捷性原则 (5)四、系统设计及工程规范 (6)五、方案设计与功能实现 (7)5.1温湿度监测 (7)5.2区域漏水监测 (7)5.3市电监测 (8)5.4 UPS监测 (8)5.5电池组监测 (9)5.6普通空调控制 (9)5.7精密空调监测 (10)5.8消防监测 (11)5.9红外监测 (11)5.10门禁系统 (12)5.11视频监控 (12)5.12设备电源管理 (13)5.13机柜微环境监控 (13)六、软件介绍 (14)一、背景与需求随着信息网络技术的不断发展,各机房中的计算机设备数量不断增加。

对环境的要求也越来越严格。

而且有些用户的机房广泛分布于各分支机构所在地域或者其他各个地域。

由于欠缺与运行网络的规模体系相对称的运维系统,数量众多的无人值守机房的物理运行环境状况、动力配电状况、设备运行状况、人员活动状况以及消防状况的变化包括可能出现的危急状况,均无法得到及时的发现和处理,也就很难被有效预见、防范和避免。

因此,为保证组织的安全、稳定、高效运行,保证网络设备的良好运行状态和设备使用寿命与安全,实现用户的最大投资效益,就有必要对网络运行环境的电力供应、温度、湿度、漏水、空气含尘量等诸多环境变量,UPS、空调、新风、除尘、除湿等诸多设备运行状态变量,进行24小时实时监测与智能化调节控制,以保证网络运行环境的稳定与网络软硬件资源、设备的安全以及相关信息数据资产的安全。

本系统立足于建设一个全面覆盖用户网络所有核心机房、汇聚层机房、重点和非重点接入层设备间,支持监控运维网带外通讯,支持监控运维网独立自供电运行,集动力、环境、视频、设备、安防、消防综合监测、调控、监视软硬件平台于一体的分布式、智能化网络机房远程运维管理系统。

二、系统概述系统引入独立运维网概念,采用分布式系统结构,以高可靠性、高环境适应性的环形工业级以太网作为通讯链路,构建独立于用户网络运行维护网络,以主监控服务器为系统的策略核心与控管中心,采用嵌入式多维变量智能采集单元作为系统的分布式智能监测控制节点,实现环境变量、设备状态变量的自动监测采集、智能化自动调节控制。

图2-1 机房集中监控系统拓扑图该系统可对分布在不同物理空间、不同地域的多维物理环境变量与设备状态变量、进行分布式采集监测、分布式调节、控制,集控化智能远程维护管理。

全面防范网络物理运行环境威胁,超越网络维护管理中的物理性障碍。

实现机房集中监控的目的。

另外,机房集中监控系统实现机房现场视频监控、动力环境数据监控、安防监控、环境设备(空调、照明)控制、远程电源管理、网络设备远程网管维护(远程串口命令配置)的全面有机整合。

不仅全面实现对机房环境数据与现场视频的全面监测、预警和告警,更为运行维护人员提供了一个可对各机房进行远程空调控制、远程电源管理和远程自动照明控制的远程控管干预平台,同时系统还为网管维护人员提供了远程串口命令配置功能,即针对配备了远程串口命令配置模块的运行网设备,即使运行网瘫痪或设备死机,网管人员仍可通过运维网对相关设备进行断通电重启和远程串口命令配置,无需带着笔记本跑到现场进行串口操作。

使运维人员足不出户即可依托运维网解决大部运维问题。

图2-2 融智机房集中监控拓扑图一、系统设计原则3.1 可靠性、稳定性原则3.3.1系统设备硬件均采用高可靠性的工控级产品,在运行环境温湿度范围、抗电磁干扰、噪声震动、空气含尘量等方面具有高于被监控网络的良好适应性。

3.1.2系统采用了强弱电分离的设计结构,强电的通断及正常交流传输所产生的电磁脉冲和感应电磁波完全被屏蔽在强电箱体内,不会对系统的弱电部分以及被监控网络的正常运行造成干扰。

3.1.3通讯链路采用环形结构的工控级以太专网,可靠性高,环境适应性好。

拥有独立于所监测的IP网络的通讯链路或通讯控制通道,即使在被监控IP网络不通时也能够完全正常地起到网络运行环境监测与调控作用。

对于高端用户融智机房集中监控系统可依托用户当前网络的物理介质,采用工业级以太网通讯模块建立一个独立于运行网络、环境耐受级别和可靠性更高的工业级运维网,依托独立运维网为系统提供一个不受运行应用网络状态影响的工业级带外通讯链路,同时每个融智机房综合监控工作站在每个机房节点都经内置安全网关跨接在运维网和内部网络上,实现系统的双网热备与全网应用。

对于暂时不具备相关条件用户,系统亦可直接依托用户现有网络运行。

3.1.4环境温湿度、配电系统以及UPS、精密空调等干节点设备状态以及其它环境变量、设备状态变量的采集、传输均采用数字化技术,传输过程数据精度无损耗、无偏移、不受线阻、电压波动与电磁干扰影响。

3.1.5环境监测控制执行器与设备监测控制执行器均采用双电源结构,任何一个电源出现问题都不会出现系统供电的中断。

配备应急电源模块,系统可选配为自身及上行链路设备提供备用应急电源,在系统外的市电及UPS全部中断的情况下可启动后备电源支持系统延时运行,使告警信息能够在系统彻底断电终止运行前传送到达网管监控人员。

3.1.6系统采用分布式结构,采用嵌入式、智能型的监测控制工作站主机,监测控制工作站主机本身具有强大的策略执行能力,一般只需接受主控服务器的策略部署约束和管理约束,可很好地与主控服务器协同,可极大地简化系统数据采集、传输、处理的过程和路径,因此拥有更高的可靠性。

3.2 安全性原则3.2.1系统内部网络层以上数据通讯采用自定义专有协议,可充分减少运维系统的外部攻击威胁,同时按用户需求定制化提供通用或专用协议的外部通讯接口,保证安全的基础上实现应用的开放性与广泛性。

3.2.2系统将影响网络运行安全、设备安全的环境变量、设备状态变量、安防状况、消防状况等因素全面纳入系统的监测、报警、调控范围全面保证运行安全、设备安全与数据安全。

3.2.3对电源管理子系统内的每路被管理电源均采用通断双路控制信号并行控制,并默认常闭输出,在控制主机出现故障、控制线路被意外拔掉有以及控制器自身断电重启等可预见的极端情况下,运行网设备的供电线路可以保持状态,以免造成系统供电中断影响机房的正常用电。

即使电源管理系统完全失效亦可将电源管理执行器作为普通PDU插板使用。

3.2.4在状况报警方面,除本地声光报警、网络中心机房图示定位报警外,本系统还支持独立的移动通讯短信报警、电话语音报警和LED屏幕信息告警以及MAIL告警,在报警信息传递和远程控制的方式上最大限度的保证了系统的安全性。

3.2.5系统采用C/S为主、B/S为辅的系统结构,针对运维管理层面的用户,系统采用安全性具有更好保障的C/S结构,以工控机的以太专网作为系统的通讯构架,并以经过严格身份认证的硬件远程登录方式(人机界面OVER IP)实现主控服务器的远程访问操作控制,实现系统与互联网的自数据链路层以上完全隔离的人机界面链接,既可使系统支持网络远程操作控制,又可使系统免除暴露于公共网络的各种风险。

针对普通监管用户,系统仅提供常规的WEB远程监测控制功能,不提供攸关安全的系统设置管理功能,并同时对用户来访网段、用户身份进行过滤和认证。

3.3 实用性、先进性、便捷性原则3.3.1本系统全面实现对网络中心机房、汇聚层、接入层设备间等所有网络物理运行环境的全面监测、调控、报警与远程维护管理控制;全面防范物理层风险、降低网络故障率、全面减轻维护负担和维护开销。

3.3.2本系统实现了本地报警、主控室图示定位报警、手机短信报警的三位一体的报警机制,保安人员、网管人员和相应的领导负责人员可同时以不同形式收到报警信息,关注充分、职责分明,有利于网络硬件安全的维护与管理。

3.3.3本系统实现了中心机房服务器、交换机的远程断/通电重启,远程人机界面操作,全面克服了服务器维护管理的物理距离障碍。

3.3.4本系统实现了设备间交换机的远程断/通电重启,远程串口命令配置,全面克服的交换机维护管理的物理距离障碍。

3.3.5本系统实现对运行环境的网络远程控制、手机短信指令远程控制和基于预置策略的自动控制,对网络中心机房、设备间的服务器、交换机、路由器、防火墙,以及空调、通风等设备或辅助设备以及电力供应进行有效的远程控制或自动控制,保证网络硬件运行环境的安全。

四、系统设计及工程规范遵循或参照标准:国家标准:国家标准《电子计算机机房设计规范》(GB50174-93)国家标准《计算站场地技术要求》(GB2887-89)国家标准《计算站场地安全技术》(GB9361-88)国家标准《计算机机房用活动地板的技术要求》(GB6650-86)国家标准《电子计算机机房施工及验收规范》(SJ/T30003)国家标准《低压配电设计规范》(GB50054-95);国家标准《供配电系统设计规范》(GB50052-95);国家标准《建筑设计防火规范》(GB50222-95)国家标准《高层民用建筑设计防火规范》(GB50045-95);国家标准《电气装置安装工程接地装置施工及验收规范》(GB50169-92);国家标准《电气装置安装工程电气设备交接试验标准》GB 50150-91国家标准《现场设备、工业管道焊接工程施工及验收规范》GB 50236-98 行业表准:《建筑与建筑群综合布线系统工程设计规范》CECS72:1995《建筑防雷》IEC1024-1:1990《用户终端耐过电压和过电流能力》ITU.TS.K21:1998《建筑装饰工程施工及验收规范》JGJ 73-91:1991五、方案设计与功能实现机房集中监控系统一共有以下几种监控子系统:市电监测子系统、UPS监测子系统、电池组监测子系统、配电开关监测子系统、普通空调监测子系统、精密空调监测子系统、温湿度监测子系统、漏水监测子系统、消防监测子系统、门禁监控子系统、视频监控子系统,电源管理子系统、机柜微环境监控子系统。

5.1温湿度监测监测对象:对机房内重要区域的温度、湿度进行实时监测。

监测实现:将温湿度传感器RS485信号,通过网线引出接到系统智能采集单元的串口上,设备可以设置地址码,每个传感器上面有液晶屏显示。

在多个传感器之间用4芯线串接,再与系统智能采集单元的串口连接,系统通过传感器不同的地址码来区别每个位置的传感器。

监测内容:实时显示温湿度传感器所在位置的温度、湿度变化情况。

5.2区域漏水监测监测对象:对机房内的空调的冷凝水、窗户和易漏水等位置进行监测,且实时报警。

监测实现:在机房易漏水的下方或周围铺设漏水感应线,将感应线接到漏水控制器上,再将控制器的输出信号接到系列智能采集单元。

这样当漏水感应线检测到有水时,系统会立即报警并通知机房管理人员。

相关主题