4.1 对于如下系统,求其传递函数。
并判别:系统是否由其传递函数完全表征?系统是否渐进稳定?是否输入-输出稳定?(1)[]0100001061161310x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦= 解:由3261160sI A s s s -=+++=得极点为:1231,2,3s s s =-=-=-所以系统渐进稳定。
所以系统为输入-输出稳定,但不能由G (s )完全表征。
(2)[]010000102500550510x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=-解:由3252500sI A s s -=+-=得1235,55,55s s i s i ==-+=--所以不是渐进稳定。
G(s)=C(sI-A)1-B=C 1502501001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---s s sB=)5)(55)(55()5(50--+++-s j s j s s .=)55)(55(50j s j s -+++所以系统是输入-输出稳定,但不能由G (s )完全表征。
(3)[]110001010002110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=- 解:由3220sI A s s s -=++=得1230,1,1s s s ==-=-所以系统不是渐进稳定。
所以系统是输入-输出稳定,但不能由G (s )完全表征。
(4)(a )解:25()27s G s s s -=+-,1,21s =-±,有极点在右半平面 所以既不是渐进稳定,又不是输入-输出稳定。
系统可由其传递函数完全表征。
.(b )解:)54)(1()1)(3()(2++-++=s s s s s S G .,有极点在右半平面 所以既不是渐进稳定,又不是输入-输出稳定。
系统可由其传递函数完全表征。
(c )解:1()(1)(3)s G s s s -=++,有对消的零极点s=1在右半平面,所以系统不能由传递函数完全表征,不是渐进稳定,是输入-输出稳定4.2 已知系统的特征方程如下,分别用劳斯和霍尔维茨判据判别稳定性。
(1)010092023=+++s s s100410020910123ss s s , D=10020091010020 D 1>0, D 2=80>0, D 3=8000>0故该系统将近稳定。
(2)322092000s s s +++=解:3211920020010200s s s s -123202000190020200200,200,40000D D D D =∴=>=-<=-<所以,系统不稳定(3)025103234=++++s s s s147/5317.411025301234s s s s s -,D=2531100025300110D 1=10>0; D 2=47>0, D 3=-153<0, D 4=-306<0 ; 所以系统不稳定;(4)6543244478100s s s s s s +-+--+=解:6543210147104480551020102.5109010s s s s s s s ---------辅助多项式423()5510()2010p s s s p s s s=--+=-- 所以不稳定(5)025.666)256)(4)(2(2=+++++s s s s 解: 025.8661986912234=++++s s s s25.866025.8665.521981225.86669101234s s s ss ε←,D=25.8666910198120025.8666910019812D 1=12>0 , D 2=630>0 , D 3=0 , D 4=0; 所以该系统临界稳定;(6)4328181650s s s s ++++=解:4321011858161652725s s s s s 12348160011850081600118580,1280,4480,22400D D D D D ==>=>=>=> 所以系统稳定 4.3 确定使系统稳定的12K K 和(a )解:132111(1)()(21)K s G s s K s K s K +=++++ 由劳斯判据得1K >0(b )解:32210(1)()2(101)1010s G s s K s s +=++++ 由劳斯判据得2K >0.14.4 某单位反馈系统的开环传递函数为02()(717)KG s s s s =++ (1)确定使系统稳定的K 的临界值。
(2)若要求闭环节点的实部均小于-2,求K 的取值范围 解:(1)闭环传递函数为:32()717KG s s s s K=+++ 由劳斯判据:321117711907s s K K ss K-得0119K<< 故临界值时 K=119(2)令2s p =-,得32140p p p K +++-=由劳斯判据:32101111415014p p K p K p K ---得1415K <<4.5 已知系统的开环传递函数为0(1)()(1)(21)K s G s s s s τ+=++,试用劳斯判据确定使系统稳定的参数,K τ的范围。
解:32(1)()2(2)(1)K s G s s s K s Kττ+=+++++由劳斯判据:321212(22)2s K s K K K ss Kτττττ++-+++得002K τ>⎧⎨<<⎩ 或 2202K τττ>⎧⎪⎨+<<⎪-⎩4.6 已知系统做等幅震荡,确定系统参数,K α的值 解:其特征方程为:32(2)10s s K s K α+++++=由劳斯判据:321121(2)(1)1s K s K K K ss K ααα+++-++若(2)(1)KK α+-+=0则辅助多项式2()1()2p s s K p s sαα=++=判据为:32112121s K s K s s K αα+++所以系统参数应满足01(2)1K K K αα≥⎧⎪≥-⎨⎪+=+⎩4.9 由零极点确定根轨迹草图。
4.10(1) (2)利用劳斯判据,可求的:01.08.07.1123=++++K s s s 因为该系统极点都在左半平面,所以该系统稳定1111231.07.126.11.07.18.01K s K s K s s +-+ 所以20K >求得:0<K 1<1.26(3) (4)340>K 3>0402K <<4.11证明:∴ 所以1s 是根轨迹上的一点。
4.12(1)1,1,2N P Z ===,系统不稳定 (2)1,1,0N P Z =-==,系统稳定 (3)0,2,2N P Z ===,系统不稳定 (4)2,0,2N P Z ===,系统不稳定 (5)2,2,0N P Z =-==,系统稳定 (6)0,0,0N P Z ===,系统稳定 (7)1,1,0N P Z =-==,系统稳定 (8)1,1,2N P Z ===,系统不稳定4.13 绘制开环系统奈奎斯特曲线,并判断系统稳定性和K 的关系(1)0()(0.11)(0.51)KG s s s s =++012K <<时系统稳定(2)0()(1)(2)(3)KG s s s s =+++060K <<时系统稳定 (3)0(21)()(1)K s G s s s +=-0.5K >时系统稳定4.14 (1)由图得:系统稳定(2)相角裕度为33度,幅值裕度为9.2dB 。
(3)临界稳定时,K=28670(4)相角裕度为40度时,K=7366。
4.15 开环传递函数为021()s G s sτ+=,计算相角裕度为45度时,τ的值解:0()180135c G j ωγ∠=-+=-︒即arctan()180135c τω-︒=-︒,得c τω=1 又由0()1c G j ω=得0.252c ω=所以0.2520.84τ-==4.16 420)1()(5)(+=-jw e jw jw G jwτ 当|G(jw)|=1 时 求得c w 解得: τ = 43.1所以当τ < 43.1时,系统稳定 4.17(1)幅值裕度无穷大,相角裕度12度。
(3)幅值裕度18dB ,相角裕度180度。
(5)不稳定 (7)不稳定4.18 解: 系统的传递函数为: 10)110(10)()(1)()()(2+-+=+=s K s S H s G s G s R s C h 由劳斯判据可进行解决,10110101012s K s s h - 当10K h -1>0时,系统稳定,当10K h -1=0时,系统临界稳定,此时传递函数的极点2,1s =±10j ,K h =0.1。