北京航空航天大学基础物理实验氢原子光谱和里德伯常数的测量第一作者XXX第二作者XXX指导老师:XXX一、 实验要求 实验重点○1 巩固、提高从事光学实验和使用光学仪器的能力(分光仪的调整和使用) ○2掌握光栅的基本知识和方法 ○3了解氢原子光谱的特点并使用光栅衍射测量巴尔末系的波长和里德伯常数 ○4巩固与扩展实验数据处理的方法——测量结果的加权平均,不确定度和误差的计算,实验结果的讨论等1、 预习思考题○1如何由(5.11-1)出发证明:在相邻的两个主极大之间由N-1个极小,N-1个次极大;N 越大,主极大的角宽度越小?答:光栅衍射可以看作是单缝衍射和多缝干涉干涉的综合。
当平面单色光正入射到光栅上时,其衍射光振幅的角分布正比于单缝衍射因子sin αα和缝间干涉因子sin sin N ββ的乘积,及沿着θ方向的的衍射光强220sin sin ()()()sin N I I αβθαβ=,式中sin sin ,,a d N θθαβλλ==是光栅的总缝数。
当sin 0β=时,sin N β也等于0,sin sin N N ββ=,()I θ形成干涉极大;当sin 0N β=但sin 0β≠时,()0I θ=,为干涉极小。
它说明:两个相邻的主极大之间有N-1个极小,N-2个次极大;N 数越多,主极大的角宽度越小。
○2 氢原子里德伯常数的理论值等于什么?氢原子光谱的巴尔末系中对应的n=3,4,5的3条谱线应当是什么颜色?答:理论值R H =(10967758.1±0.8)1m -。
谱线分别是红色、蓝色、与紫色。
○3 总结分光仪调整的关键步骤,在调整望远镜接受平行光、望远镜光轴垂直仪器主轴、平行光管射出平行光、平行光管主轴垂直仪器主轴的过程中应分别调整什么?调整完成的标志又是什么?答:分别应该调整目镜与载物台;载物台调平螺母;狭缝套筒与平行光管的水平调节螺母。
调节完成的标志是:平面镜反射回来的绿色十字与叉丝无视差;平面镜正反两面反射回来的绿色十字均与上叉丝重合,而且在平台转动的过程中绿色十字沿着上叉丝移动;狭缝像与叉丝无视差,而且其中点与中心叉丝等高。
○4 光栅位置的调整和固定要达到什么目的?通过什么螺钉来进行? 答:目的是使得光栅平面与仪器主轴平行,且光栅平面垂直平行光管,光栅刻线与仪器主轴平行。
通过调平螺钉来实现。
○5 导出附录二中加权平均及其不确定度的计算公式。
答:最佳测量值x 由2()0()i i x x x u x -∂=∂∑导出。
由此可知:221/()()i i ix x u x u x =∑∑221()1/()i u x u x =∑二、实验原理 1、氢原子光谱原子光谱是线光谱,光谱排列的规律不同,反映出原子结构的不同,研究原子结构的基本方法之一是进行光谱分析。
氢(氘)原子光谱是最简单、最典型的原子光谱。
人们很早就发现了氢原子光谱在可见区和紫外区有好多谱线, 构成一个很有规律的系统, 谱线的间隔和强度都向着短波方向递减。
1985年, 从某些星体的光谱中观察到的氢原子光谱已达十四条, 巴耳末发现这些谱线的波长具有如下的分布规律, 422:-=n n B Hλ n=3,4,5 (1)式中的B=364.56nm, 由此式计算所得波长值, 与实验测量值符合得很好, 这一发现对光谱学提供了重要的开端, 后人称该式为巴耳末公式, 该公式所表达的一组谱线称为巴耳末系。
后来, 里德伯发现, 若(1)式中令RH= 4/ B, 则巴耳末公式即可改写为:⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=222222*********~n R n B n n B H ν n=3,4,5… 式中V 为波数,HR 称为氢的里德伯常数。
根据波尔理论,可得出氢和类氢原子的里德伯常数为:()()Mm 1R M m 1m c h 4z e 2ch 4z e 2R 32044320442z +=+⋅==∞πεππεμπ 其中:M 为原子核质量,m 为电子质量,e 为电子电荷,C 为光速,h 为普朗克常数,0ε为真空介电常数,z 为原子序数。
当∞→M 时,可得里德伯常数为:()ch z me R 32044242πεπ=∞里德伯常数∞R 是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,它的公认值为:1m 568549.10973731R -∞=。
2、 光栅及其衍射分光原理通常把由大量等宽等间距的狭缝构成的光学元件叫做衍射光栅。
它能使入射光的振幅或位相,或者两者同时产生周期性空间调制。
光栅最重要的应用是用作分光元件,分光原理可以从多缝夫琅和费衍射图象中亮线位置的公式看出,公式(1)表明,对应于亮线的衍射角与波长有关,是衍射级次。
因此对于给定间距(光栅常数)的光栅,当用多色光照明时,不同波长的同一级亮线,除零级外均不重合,即发生了色散,这就是光栅的分光原理。
对应于不同波长的不同亮线称为光栅光谱线。
公式(1)称为光栅基本方程。
3、光栅的色散本领与色分辨本领(1)、色散本领光栅的色散本领通常指角色散和线色散,光栅的角色散是波长相差的两条谱线分开的角距离,公式表示为:光栅的线色散是聚焦物镜焦面上的波长相差的两条谱线分开的距离,公式表示为:其中是物镜的焦距。
(2)光栅的色分辨本领光栅的色分辨本领是指分辨两条波长差很小的谱线的能力。
光栅的色分辨本领可以由瑞利条件算出,即波长谱线的强度极大值和波长为的谱线强度极大值近旁的强度极小值重合,这时的就是光栅所能分辨的最小波长差。
公式表示为:公式表明,光栅的色分辨本领正比于光谱级次和光栅线数,与光栅常数无关。
三、实验仪器主要仪器:1、分光仪2、透射光栅——空间频率600/mm的黑白复制光栅3、钠灯——钠灯型号为ND20,用GP20Na-B型交流电源(功率20W,工作电压20V,工作电流1.3A)点燃,预热十分钟后发出平均波长为589.3nm的强黄光。
本实验中用做标准谱线来校准光栅常数4、氢灯——氢灯用单独的直流高压电源(150型激光电源)点燃。
使用时电极性不能接反,也不用手去碰电极(几千伏)。
四、实验内容本实验要求通过巴尔末系的二至三条谱线的测定,获得里德伯常数的最佳实验值,计算不确定度和相对误差,并随实验结果进行讨论,具体内容为:○1调节分光仪调节的基本要求是使望远镜聚焦于无穷远处,其光轴垂直于仪器主轴;平行光管射出平行光,其光轴垂直仪器主轴。
○2调节光栅调节光栅的要求是使得光栅平面(光刻线所在的平面)与仪器主轴平行,且光栅平面垂直于平行光管;光栅刻线与仪器主轴平行。
○3用钠黄光589.3nmλ=作为标准谱线校准光栅常数d。
○4测定氢光谱中2到3条可见光的波长,并由此测定里德伯常数R H。
五、数据处理1、原始数据列表与初步处理○1用钠灯校准光栅常数1θ=20 º45’30’’ 2θ=20 º44’45’’ 3θ=20º42’30’’ 4θ=20 º41’15’’ 5θ=20 º43’15’’○2用氢灯计算里德伯常数 1θ=15º9’30’’ 2θ=15 º9’45’’ 3θ=15º0’30’’ 4θ=15 º6’45’’ 5θ=15 º7’45’’1θ=17º0’30’’ 2θ=17 º0’15’’ 3θ=17º2’0’’ 4θ=16 º56’15’’ 5θ=16º57’45’’1θ=23º12’30’’ 2θ=23 º4’30’’ 3θ=23º12’45’’ 4θ=23 º12’45’’ 5θ=23 º8’45’’2、 校准光栅常数d由公式()!dsin()=k!!n r n rθλ-,其中k=1,589.3nm λ=⇒/sin()d λθ=首先计算d 的值:123451()52043'27''o θθθθθθ=++++=96589.310 1.66530377510sin sin 2043'27''od λθ--⨯∴===⨯得到m 下面进行d 的不确定度()u d 的合成sin()Ind sin()d In In θλθλ=⇒+=由d cos()sin()d θλθθλ∆∆∆∴+= 即u()d d =而其中()()0u()u()tan()u u d d θλθθ=∴=⨯, 因此关键在于进行的合成 ○1首先合成其b 类不确定度 仪器的最小分度值为1’,即得到1'∆=仪b b (2)()0.29'u u θθ∆∆∴=⇒==○2合成其a 类不确定度a ()40.04''0.751'u θ==== ○3合成d 的不确定度()0.805'u θ===()u()tan()u d d θθ=⨯60.805/601801.66530377510tan 2043'27''oπ-⨯=⨯⨯ 91.0310-=⨯m于是得到d 结果的最终表述为:6d (d)(1.6650.001)10u m -±=±⨯3、 计算氢原子的里德伯常数22111R ()(3,4,5,6......)2H n nλ=-=根据巴尔末系公式:得到2sin()(0.251/)H Ink Ind In InR In n θ--=+-其中n 与k 可以视为常数,因此就得到:()H H u R R =n=3时,看到红光线;n=4时,看到蓝光线;n=5时,看到紫光线 由光栅方程知道sin()sin(),d d k kθθλλ=⇒=光栅常数在上面已经求的 (1)当观察到是紫色光光谱时,n=5 因此得到其波长为dsin()λθ= 首先求解里德伯常数22111/[()]1/[dsin()0.21]25H R λθ=⨯-=⨯ 根据紫光数据123451()156'51''5o θθθθθθ=++++=○1首先合成其b 类不确定度 仪器的最小分度值为1’,即得到1'∆=仪b b (2)()0.29'u u θθ∆∆∴=⇒==○2合成其a 类不确定度a ()100.91'' 1.682'u θ====○3合成θ的不确定度() 1.71'u θ===有公式62241111111111dsin()0.21 1.66510sin156'51''0.21()251096.865610H o R m λθ--=⨯=⨯=⨯⨯⨯-=⨯又有()H H u R R =41096.865610⨯=512.12510m -⨯于是得到里德伯常数的表达式为:41()(1096.87 2.13)10H H R u R m -±=±⨯(2)当观察到的是蓝色光光谱时,n=4 因此得到其波长为dsin()λθ= 首先求解里德伯常数221131/[()]1/[dsin()]2416H R λθ=⨯-=⨯ 根据蓝光数据123451()1659'11''5o θθθθθθ=++++=○1首先合成其b 类不确定度 仪器的最小分度值为1’,即得到1'∆=仪b b (2)()0.29'u u θθ∆∆∴=⇒==○2合成其a 类不确定度a ()62.157'' 1.04'u θ====○3合成θ的不确定度有公式6411611163sin() 1.66510sin1659'11''31096.444710H o R d m θ--==⨯⨯⨯⨯=⨯又有()H H u R R =41096.444710⨯ =411.269910m -⨯于是得到里德伯常数的表达式为:41()(1096.44 1.23)10H H R u R m -±=±⨯ (3)当观察到是红色光光谱时,n=3因此得到其波长为dsin()λθ=首先求解里德伯常数221151/[()]1/[dsin()]1/[dsin()5/36]2336H R λθθ=⨯-=⨯=⨯ 根据蓝光数据 123451()2310'15''5o θθθθθθ=++++=○1首先合成其b 类不确定度 仪器的最小分度值为1’,即得到1'∆=仪b b (2)()0.29'u u θθ∆∆∴=⇒==() 1.08'u θ===○2合成其a 类不确定度a ()108.737'' 1.81'u θ==== ○3合成θ的不确定度() 1.83'u θ===有公式64136/51136/5d sin() 1.66510sin 2310'15''1099.0110H o R m θ--==⨯⨯⨯=⨯又有()H H u R R =41099.0110⨯=411.4010m -⨯于是得到里德伯常数的表达式为:41()(1099.01 1.40)10H H R u R m -±=±⨯(4) 进行里德伯常数的加权合成根据公式:33422222222117111096.871096.441099.01111/()/()10()() 2.13 1.23 1.40 2.13 1.23 1.401.0974*******Hi H i i Hi Hi R R u R u R m ==-==++++⨯=⨯∑∑41()0.847710H u R m -===⨯ 因此里德伯常数的最佳测量值为: 71()(1.09750.0008)10H H R u R m -±=±⨯4、 计算钠黄光角色散率和分辨本领由角色散率的物理定义知道:51411 6.4210cos() 1.66510cos 2043'27''o D m d θθ--===⨯⨯⨯ 由色分辨本领的物理定义知道:2462.2010 1.32101.66510D D R kN k d d --⨯=====⨯⨯ 六、 实验总结这次做的实验名称是《氢原子光谱及里德伯常数的测定》。