当前位置:文档之家› 实验二(1)进程同步

实验二(1)进程同步

实验二(2)进程同步一、实验目的1、生产者-消费者问题是很经典很具有代表性的进程同步问题,计算机中的很多同步问题都可抽象为生产者-消费者问题,通过本实验的练习,希望能加深学生对进程同步问题的认识与理解。

2、熟悉VC的使用,培养和提高学生的分析问题、解决问题的能力。

二、实验内容及其要求1.实验内容以生产者/消费者模型为依据,创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。

2.实验要求学习并理解生产者/消费者模型及其同步/互斥规则;设计程序,实现生产者/消费者进程(线程)的同步与互斥;三、实验算法分析1、实验程序的结构图(流程图);2、数据结构及信号量定义的说明;(1) CreateThread●功能——创建一个在调用进程的地址空间中执行的线程●格式HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes,DWORD dwStackSize,LPTHREAD_START_ROUTINE lpStartAddress,LPVOID lpParamiter,DWORD dwCreationFlags,Lpdword lpThread );●参数说明lpThreadAttributes——指向一个LPSECURITY_ATTRIBUTES(新线程的安全性描述符)。

dwStackSize——定义原始堆栈大小。

lpStartAddress——指向使用LPTHRAED_START_ROUTINE类型定义的函数。

lpParamiter——定义一个给进程传递参数的指针。

dwCreationFlags——定义控制线程创建的附加标志。

lpThread——保存线程标志符(32位)(2) CreateMutex●功能——创建一个命名或匿名的互斥量对象●格式HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes,BOOL bInitialOwner,LPCTSTR lpName);bInitialOwner——指示当前线程是否马上拥有该互斥量(即马●参数说明lpMutexAttributes——必须取值NULL。

上加锁)。

lpName——互斥量名称。

(3) CreateSemaphore●功能——创建一个命名或匿名的信号量对象●格式HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,LONG lInitialCount,LONG lMaximumCount,LPCTSTR lpName );●参数说明lpSemaphoreAttributes——必须取值NULL。

lInitialCount——信号量的初始值。

该值大于0,但小于lMaximumCount指定的最大值。

lMaximumCount——信号量的最大值。

lpName——信号量名称。

(4) WaitForSingleObject功能——使程序处于等待状态,直到信号量hHandle出现(即其值大于等于1)或超过规定的等待时间●格式DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds);●参数说明hHandle——信号量指针。

dwMilliseconds——等待的最长时间(INFINITE为无限等待)。

(5) ReleaseSemaphore●功能——对指定信号量加上一个指定大小的量。

成功执行则返回非0值●格式BOOL ReleaseSemaphore(HANDLE hSemaphore,LONG lReleaseCount,LPLONG lppreviousCount );●参数说明hSemaphore——信号量指针。

lReleaseCount——信号量的增量。

lppreviousCount——保存信号量当前值。

(6) ReleaseMutex●功能——打开互斥锁,即把互斥量加1。

成功调用则返回0●格式BOOL ReleaseMutex(HANDLE hMutex);●参数说明hMutex——互斥量指针。

(7) InitializeCriticalSection●功能——初始化临界区对象●格式VOID InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection);●参数说明lpCriticalSection——指向临界区对象的指针。

(8) EnterCriticalSection功能——等待指定临界区对象的所有权●格式VOID enterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);●参数说明lpCriticalSection——指向临界区对象的指针。

(9) LeaveCriticalSection●功能——释放指定临界区对象的所有权●格式VOID LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection);●参数说明lpCriticalSection——指向临界区对象的指针4、主要算法创建生产者和消费者线程for(i =0;i< (int) n_Thread;i++){if(Thread_Info[i].entity =='P')h_Thread[i]= CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),&(Thread_Info[i]),0,NULL);elseh_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),&(Thread_Info[i]),0,NULL);}生产者进程void Produce(void *p){//局部变量声明;DWORD wait_for_semaphore,wait_for_mutex,m_delay;int m_serial;//获得本线程的信息;m_serial = ((ThreadInfo*)(p))->serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);Sleep(m_delay);//开始请求生产printf("Producer %2d sends the produce require.\n",m_serial);//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1);//互斥访问下一个可用于生产的空临界区,实现写写互斥;wait_for_mutex = WaitForSingleObject(h_mutex,-1);int ProducePos = FindProducePosition();ReleaseMutex(h_mutex);//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发;//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos);Buffer_Critical[ProducePos] = m_serial;printf("Producer %2d finish producing :\n ",m_serial);printf(" position[ %2d ]:%3d \n" ,ProducePos,Buffer_Critical[ProducePos]);//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);}消费者进程void Consume(void * p){//局部变量声明;DWORD wait_for_semaphore,m_delay;int m_serial,m_requestNum; //消费者的序列号和请求的数目;int m_thread_request[MAX_THREAD_NUM];//本消费线程的请求队列;//提取本线程的信息到本地;m_serial = ((ThreadInfo*)(p))->serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);m_requestNum = ((ThreadInfo *)(p))->n_request;for (int i = 0;i<m_requestNum;i++)m_thread_request[i] = ((ThreadInfo*)(p))->thread_request[i];Sleep(m_delay);//循环进行所需产品的消费for(i =0;i<m_requestNum;i++){//请求消费下一个产品printf("Consumer %2d request to consume %2d product\n",m_serial,m_thread_request[i]);//如果对应生产者没有生产,则等待;如果生产了,允许的消费者数目-1;实现了读写同步;wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1);//查询所需产品放到缓冲区的号int BufferPos=FindBufferPosition(m_thread_request[i]);//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;//进入临界区后执行消费动作;并在完成此次请求后,通知另外的消费者本处请求已//经满足;同时如果对应的产品使用完毕,就做相应处理;并给出相应动作的界面提//示;该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;EnterCriticalSection(&PC_Critical[BufferPos]);printf("Consumer%2d begin to consume %2d product \n",m_serial,m_thread_request[i]);((ThreadInfo*)(p))->thread_request[i] =-1;if(!IfInOtherRequest(m_thread_request[i])){Buffer_Critical[BufferPos] = -1; //标记缓冲区为空;printf("Consumer%2d finish consuming %2d:\n ",m_serial,m_thread_request[i]);printf(" position[ %2d ]:%3d \n" ,BufferPos,Buffer_Critical[BufferPos]);ReleaseSemaphore(empty_semaphore,1,NULL);}else{printf("Consumer %2d finish consuming product %2d\n ",m_serial,m_thread_request[i]);}//离开临界区LeaveCriticalSection(&PC_Critical[BufferPos]);}}示例程序源代码:#include<windows.h>#include<fstream.h>#include<stdio.h>#include<string>#include<conio.h>//定义常量;//此程序允许的最大临界区数;#define MAX_BUFFER_NUM 10//秒到微秒的乘法因子;#define INTE_PER_SEC 1000//本程序允许的生产和消费线程的总数;#define MAX_THREAD_NUM 64//定义一个结构,记录在测试文件中指定的每一个线程的参数struct ThreadInfo{int serial; //线程序列号char entity; //是P还是Cdouble delay; //线程延迟int thread_request[MAX_THREAD_NUM]; //线程请求队列int n_request; //请求个数};//全局变量的定义//临界区对象的声明,用于管理缓冲区的互斥访问;CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM];int Buffer_Critical[MAX_BUFFER_NUM]; //缓冲区声明,用于存放产品;HANDLE h_Thread[MAX_THREAD_NUM]; //用于存储每个线程句柄的数组;ThreadInfo Thread_Info[MAX_THREAD_NUM]; //线程信息数组;HANDLE empty_semaphore; //一个信号量;HANDLE h_mutex; //一个互斥量;DWORD n_Thread = 0; //实际的线程的数目;DWORD n_Buffer_or_Critical; //实际的缓冲区或者临界区的数目;HANDLE h_Semaphore[MAX_THREAD_NUM]; //生产者允许消费者开始消费的信号量;//生产消费及辅助函数的声明void Produce(void *p);void Consume(void *p);bool IfInOtherRequest(int);int FindProducePositon();int FindBufferPosition(int);int main(void){//声明所需变量;DWORD wait_for_all;ifstream inFile;//初始化缓冲区;for(int i=0;i< MAX_BUFFER_NUM;i++)Buffer_Critical[i] = -1;//初始化每个线程的请求队列;for(int j=0;j<MAX_THREAD_NUM;j++){for(int k=0;k<MAX_THREAD_NUM;k++)Thread_Info[j].thread_request[k] = -1;Thread_Info[j].n_request = 0;}//初始化临界区;for(i =0;i< MAX_BUFFER_NUM;i++)InitializeCriticalSection(&PC_Critical[i]);//打开输入文件,按照规定的格式提取线程等信息;inFile.open("test.txt");//从文件中获得实际的缓冲区的数目;inFile >> n_Buffer_or_Critical;inFile.get();printf("输入文件是:\n");//回显获得的缓冲区的数目信息;printf("%d \n",(int) n_Buffer_or_Critical);//提取每个线程的信息到相应数据结构中;while(inFile){inFile >> Thread_Info[n_Thread].serial;inFile >> Thread_Info[n_Thread].entity;inFile >> Thread_Info[n_Thread].delay;char c;inFile.get(c);while(c!='\n'&& !inFile.eof()){inFile>> Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++];inFile.get(c);}n_Thread++;}//回显获得的线程信息,便于确认正确性;for(j=0;j<(int) n_Thread;j++){int Temp_serial = Thread_Info[j].serial;char Temp_entity = Thread_Info[j].entity;double Temp_delay = Thread_Info[j].delay;printf(" \n thread%2d %c %f ",Temp_serial,Temp_entity,Temp_delay);int Temp_request = Thread_Info[j].n_request;for(int k=0;k<Temp_request;k++)printf(" %d ", Thread_Info[j].thread_request[k]);cout<<endl;}printf("\n\n");//创建在模拟过程中几个必要的信号量empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical,"semaphore_for_empty");h_mutex = CreateMutex(NULL,FALSE,"mutex_for_update");//下面这个循环用线程的ID号来为相应生产线程的产品读写时所//使用的同步信号量命名;for(j=0;j<(int)n_Thread;j++){std::string lp ="semaphore_for_produce_";int temp =j;while(temp){char c = (char)(temp%10);lp+=c;temp/=10;}h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,lp.c_str());}//创建生产者和消费者线程;for(i =0;i< (int) n_Thread;i++){if(Thread_Info[i].entity =='P')h_Thread[i]= CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),&(Thread_Info[i]),0,NULL);elseh_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),&(Thread_Info[i]),0,NULL);}//主程序等待各个线程的动作结束;wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1);printf(" \n \nALL Producer and consumer have finished their work. \n");getch();return 0;}//确认是否还有对同一产品的消费请求未执行;bool IfInOtherRequest(int req){for(int i=0;i<n_Thread;i++)for(int j=0;j<Thread_Info[i].n_request;j++)if(Thread_Info[i].thread_request[j] == req)return TRUE;return FALSE;}//找出当前可以进行产品生产的空缓冲区位置;int FindProducePosition(){int EmptyPosition;for (int i =0;i<n_Buffer_or_Critical;i++)if(Buffer_Critical[i] == -1){EmptyPosition = i;//用下面这个特殊值表示本缓冲区正处于被写状态;Buffer_Critical[i] = -2;break;}return EmptyPosition;}//找出当前所需生产者生产的产品的位置;int FindBufferPosition(int ProPos){int TempPos;for (int i =0 ;i<n_Buffer_or_Critical;i++)if(Buffer_Critical[i]==ProPos){TempPos = i;break;}return TempPos;}//生产者进程void Produce(void *p){//局部变量声明;DWORD wait_for_semaphore,wait_for_mutex,m_delay;int m_serial;//获得本线程的信息;m_serial = ((ThreadInfo*)(p))->serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);Sleep(m_delay);//开始请求生产printf("Producer %2d sends the produce require.\n",m_serial);//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1);//互斥访问下一个可用于生产的空临界区,实现写写互斥;wait_for_mutex = WaitForSingleObject(h_mutex,-1);int ProducePos = FindProducePosition();ReleaseMutex(h_mutex);//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发;//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos);Buffer_Critical[ProducePos] = m_serial;printf("Producer %2d finish producing :\n ",m_serial);printf(" position[ %2d ]:%3d \n" ,ProducePos,Buffer_Critical[ProducePos]);//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);}//消费者进程void Consume(void * p){//局部变量声明;DWORD wait_for_semaphore,m_delay;int m_serial,m_requestNum; //消费者的序列号和请求的数目;int m_thread_request[MAX_THREAD_NUM];//本消费线程的请求队列;//提取本线程的信息到本地;m_serial = ((ThreadInfo*)(p))->serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);m_requestNum = ((ThreadInfo *)(p))->n_request;for (int i = 0;i<m_requestNum;i++)m_thread_request[i] = ((ThreadInfo*)(p))->thread_request[i];Sleep(m_delay);//循环进行所需产品的消费for(i =0;i<m_requestNum;i++){//请求消费下一个产品printf("Consumer %2d request to consume %2d product\n",m_serial,m_thread_request[i]);//如果对应生产者没有生产,则等待;如果生产了,允许的消费者数目-1;实现了读写同步;wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1);//查询所需产品放到缓冲区的号int BufferPos=FindBufferPosition(m_thread_request[i]);//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;//进入临界区后执行消费动作;并在完成此次请求后,通知另外的消费者本处请求已//经满足;同时如果对应的产品使用完毕,就做相应处理;并给出相应动作的界面提//示;该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;EnterCriticalSection(&PC_Critical[BufferPos]);printf("Consumer%2d begin to consume %2d product \n",m_serial,m_thread_request[i]);((ThreadInfo*)(p))->thread_request[i] =-1;if(!IfInOtherRequest(m_thread_request[i])){Buffer_Critical[BufferPos] = -1; //标记缓冲区为空;printf("Consumer%2d finish consuming %2d:\n ",m_serial,m_thread_request[i]);printf(" position[ %2d ]:%3d \n" ,BufferPos,Buffer_Critical[BufferPos]);ReleaseSemaphore(empty_semaphore,1,NULL);}else{printf("Consumer %2d finish consuming product %2d\n ",m_serial,m_thread_request[i]);}//离开临界区LeaveCriticalSection(&PC_Critical[BufferPos]);}}。

相关主题