高中物理图象问题分析《高考考试大纲》对学生物理学科的能力要求中明确指出,要求学生具有阅读图象、描述图象、运用图象解决问题的能力。
物理图象能形象地表达物理规律、直观地描述物理过程、鲜明地表示物理量之间的相互关系,是分析物理问题的有效手段之一,是当今高考出题的热点。
高考对图象考查的内容及命题形式主要有以下几个方面:①通过对物理过程的分析找出与之对应的图象并描绘出来;②通过对已知图象的分析寻找其内部蕴含的物理规律;③图象的转换——用不同的图象描述同一物理规律或结论;④综合应用物理图象分析解决问题。
图象问题的处理策略有两条途径:一是根据图象反映的函数关系,找到图象所反映的两个物理量间的关系,分析其物理意义和变化规律。
二是既能根据图象的定义把图象反映的规律对应到实际过程中去,又能将实际过程的抽象规律对应到图象中去,最终根据实际过程的物理规律进行判断。
这样,才抓住了解决图象问题的根本。
一、图象所反映出的物理意义:1.坐标轴的物理意义弄清两个坐标轴表示的物理量及单位.注意坐标原点是否从零开始;注意纵轴物理量为矢量情况时,横轴以上表示此物理量为正,横轴以下表示此物理量为负.2.图线形状注意观察图象形状是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系,明确图象反映的物理意义.3.斜率图线上某点的斜率表示两物理量增量的比值,反映该点处一个量随另一个量变化的快慢.几种常见图象斜率的物理意义:(1)变速直线运动的x-t图象,纵坐标表示位移,横坐标表示时间,因此图线中某两点连线的斜率表示平均速度,图线上某一点切线的斜率表示瞬时速度;(2)v -t图线上两点连线的斜率和某点切线的斜率,分别表示平均加速度和瞬时加速度;(3)线圈的Φ-t图象(Φ为磁通量),斜率表示感应电动势;(4)恒力做功的W-l图象(l为恒力方向上的位移),斜率表示恒力的大小;(5)沿电场线方向的φ-x图象(φ为电势,x为位移),其斜率的大小等于电场强度;(6)用自由落体运动测量重力加速度实验的v2-h图象(v为速度,h为下落位移),其斜率为重力加速度的2倍.4.面积的物理意义图线与横轴所围的面积常代表一个物理量,这个物理量往往就是纵、横轴所表示的物理量的乘积的物理意义.几种常见图象面积的物理意义:(1)在直线运动的v-t图象中,图线和时间轴之间的面积,等于速度v与时间t的乘积,因此它表示相应时间内质点通过的位移;(2)在a-t图象中,图线和时间轴之间的面积,等于加速度a与时间t的乘积,表示质点在相应时间内速度的变化量;(3)线圈中电磁感应的E-t图象(E为感应电动势),图线跟t坐标轴之间的面积表示相应时间内线圈磁通量的变化量;(4)力F移动物体在力的方向上产生一段位移x,F -x图象中图线和l坐标轴之间的面积表示F做的功,如果F是静电力,此面积表示电势能的减小量,如果F是合力,则此面积表示物体动能的增加量;(5)静电场中的E-x图象(E为电场强度,x为沿电场线方向的位移),图线和x坐标轴之间的面积表示相应两点间的电势差.5.交点、拐点的物理意义交点往往表示不同对象达到的某一物理量的共同点,如在同一U -I坐标系中,电阻的U-I图线和电源的U-I图线的交点表示两者连成闭合电路时的工作点;拐点既是坐标点,又是两种不同变化情况的交界点,即物理量之间的突变点.二、处理图象的基本思路:1.公式与图象的转化要作出一个确定的物理图象,需要得到相关的函数关系式.在把物理量之间的关系式转化为一个图象时,最重要的就是要明确公式中的哪个量是自变量,哪些是常量,关系式描述的是哪两个物理量之间的函数关系,那么这两个物理量就是物理图象中的两个坐标轴.2.图象与情景的转化运用物理图象解题,还需要进一步建立物理图象和物理情景的联系,根据物理图象,想象出图象所呈现的物理现象、状态、过程和物理变化的具体情景,因为这些情景中隐含着许多解题条件,这些过程中体现了物理量相互制约的规律,这些状态反映了理论结果是否能与合理的现实相吻合,这些正是“审题”“分析”“审视答案”等解题环节所需要解决的.三、题型汇总:题型1 对图象物理意义的理解【例1】甲、乙两车从同一地点沿同一方向做直线运动,其v-t 图象如图1所示.关于两车的运动情况,下列说法正确的是( )图1A.在t=1 s时,甲、乙相遇B.在t=2 s时,甲、乙的运动方向均改变C.在t=4 s时,乙的加速度方向改变D.在t=2 s到t=6 s内,甲相对乙做匀速直线运动解析:在t=1 s时,甲、乙速度相等,乙车的位移比甲车的大,选项A错误;t=2 s时,甲、乙两车的速度开始减小,但运动方向不变,选项B错误;乙在2 s~6 s内加速度都相同,选项C错误;2 s~6 s内,甲、乙图象的斜率相同即加速度相同,故甲相对乙做匀速直线运动,选项D正确.答案 D【题后反思】图象问题往往隐含着两个变量之间的关系,因此要通过有关的物理概念和规律建立函数关系,并注意理解其斜率或面积的物理意义.【强化训练1】2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图2(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度—时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为 1 000 m.已知航母始终静止,重力加速度的大小为g.则( )(a) (b)图2A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4 s~2.5 s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4 s~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变解析:由v-t图象中图线与t轴围成的面积,可估算出飞机在甲板上滑行的距离约为103 m,即大约是无阻拦索时的110,A正确.由题图的斜率可知飞机钩住阻拦索后加速度大约保持在a=27.6 m/s2>2.5g,故C正确;飞机的速度很大,空气阻力的影响不能忽略,且阻力随速度的减小而减小,所以要保持加速度不变,阻拦索的张力要逐渐减小,B错误;由P=Fv知,阻拦索对飞机做功的功率逐渐减小,故D错误.答案AC题型2 图象选择问题【例2】一小球自由下落,与地面发生碰撞,原速率反弹.若从释放小球开始计时,不计小球与地面发生碰撞的时间及空气阻力.则下列图中能正确描述小球位移x、速度v、动能E k、机械能E与时间t关系的是 ( )解析:小球自由下落,做初速度为零的匀加速运动;与地面发生碰撞,原速率反弹,做竖直上抛运动,速度图象B正确;小球下落时,速度与时间成正比,位移和动能都与时间的二次方成正比,位移图象A、动能图象C均错误;机械能保持不变,机械能图象D正确.答案BD【题后反思】此类问题应根据物理情景,找出两个物理量间的变化关系,寻求两物理量之间的函数关系,然后选择出正确的图象;若不能找到准确的函数关系,则应定性判断两物理量间的变化关系,特别要注意两种不同变化的交界点,对应图象中的拐点.【强化训练2】如图3所示,质量为m的滑块从斜面底端以平行于斜面的初速度v0冲上固定斜面,沿斜面上升的最大高度为H.已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tan α,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块在斜面上运动的机械能E、动能E k、势能E p与上升高度h之间关系的图象是 ( )图3解析:滑块机械能的变化量等于除重力外其余力做的功,故滑块机械能的减小量等于克服阻力做的功,故上行阶段:E=E0-F阻h sin α,下行阶段:E=E0′-F阻hsin α,故B错误;动能的变化量等于外力的总功,故上行阶段:-mgh-F阻hsin α=E k-E0,下行阶段:mgh-F阻hsin α=E k-E0′,C错,D对;上行阶段:E p=mgh,下行阶段:E p=mgh,A错误.答案 D【强化训练3】如图4所示,A、B为两个等量正点电荷,O为A、B连线的中点.以O为坐标原点、垂直AB向右为正方向建立Ox 轴.下列四幅图分别反映了在x轴上各点的电势φ(取无穷远处电势为零)和电场强度E的大小随坐标x的变化关系,其中正确的是( )图4解析:在两个等量正点电荷连线的垂直平分线上,O点电势最高,由于为非匀强电场,选项A、B关于电势的图线错误.O点电场强度为零,无穷远处电场强度为零,中间有一点电场强度最大,所以电场强度E的大小随坐标x的变化关系正确的是C.答案 C题型3 图象变换问题【例3】如图5甲所示,在圆形线框区域内存在匀强磁场,磁场的方向垂直于纸面向里.若磁场的磁感应强度B按照图乙所示规律变化,则线框中的感应电流I(取逆时针方向的电流为正)随时间t 的变化图线是( )图5解析:圆形线框内,从t=0时刻起磁感应强度均匀增大,根据法拉第电磁感应定律和闭合电路欧姆定律可知,此过程产生恒定的感应电动势和感应电流,磁感应强度增大到最大后开始均匀减小,产生与前面过程中方向相反的恒定的感应电动势和感应电流;由楞次定律可知,在前半段时间产生的感应电流方向为逆时针方向,为正值;后半段时间产生的感应电流方向为顺时针方向,为负值,所以感应电流I随时间t的变化图线是A.答案 A【题后反思】对于图象变换问题,应注意划分不同的时间段或者运动过程,逐个过程画出与之对应的图象.有时图象间具有某种关系,如本题中B-t图象的斜率表示单位面积内感应电动势的大小,其与电流大小成正比,找到这个关系后就可以很容易的找到正确选项.【强化训练4】光滑水平面上静止的物体,受到一个水平拉力F 作用开始运动,拉力随时间变化的图象如图6所示,用E k、v、x、P分别表示物体的动能、速度、位移和水平拉力的功率,下列四个图象中分别定性描述了这些物理量随时间变化的情况,正确的是( )图6解析: 物体在水平拉力F 作用下,做匀加速直线运动,选项B正确;其位移x =12at 2,选项C 错误;由动能定理,Fx =F·12at 2=E k ,选项A 错误;水平拉力的功率P =Fv ,选项D 正确.答案 BD题型4 图象作图问题【例4】如图7甲所示,水平地面上有一块质量M =1.6 kg ,上表面光滑且足够长的木板,受到大小F =10 N 、与水平方向成37°角的拉力作用,木板恰好能以速度v 0=8 m/s 水平向右匀速运动.现有很多个质量均为m =0.5 kg 的小铁块,某时刻在木板最右端无初速度地放上第一个小铁块,此后每当木板运动L =1 m 时,就在木板最右端无初速度地再放上一个小铁块.取g =10 m/s 2,cos 37°=0.8,sin 37°=0.6,求:甲 乙图7(1)木板与地面间的动摩擦因数μ;(2)第一个小铁块放上后,木板运动L 时速度的大小v 1; (3)请在图乙中画出木板的运动距离x 在0≤x≤4L 范围内,木板动能变化量的绝对值|ΔE k |与x 的关系图象(不必写出分析过程,其中0≤x≤L 的图象已画出).解析: (1)对木板受力分析,由平衡条件 Fcos 37°=μ(Mg -Fsin 37°)解得木板与地面间的动摩擦因数μ=0.8. (2)第一个小铁块放上后,对木板由动能定理有 Fcos 37°L-μ(Mg +mg -Fsin 37°)L=12Mv 21-12Mv 2化简得:-μmgL =12Mv 21-12Mv 2解得木板运动L 时速度的大小 v 1=v 20-2μmgLM=59 m/s(3)木板动能变化量的绝对值|ΔE k |与x 的关系图象如图所示.答案 (1)0.8 (2)59 m/s (3)见解析图题型5 图象与情景结合分析物理问题【例5】(14分)如图8甲所示,光滑水平面上的O 处有一质量为m =2 kg 物体.物体同时受到两个水平力的作用,F 1=4 N ,方向向右,F 2的方向向左,大小如图乙所示,x 为物体相对O 的位移.物体从静止开始运动,问:甲 乙图8(1)当位移为x =0.5 m 时物体的加速度多大?(2)物体在x =0到x =2 m 内何位置物体的加速度最大?最大值为多少?(3)物体在x =0到x =2 m 内何位置物体的速度最大?最大值为多少?解析:(1)由题图乙可知F 2与x 的函数关系式为: F 2=(2+2x) N当x =0.5 m 时,F 2=(2+2×0.5) N=3 N (2分) F 1-F 2=maa =F 1-F 2m =4-32 m/s 2=0.5 m/s 2(2分)(2)物体所受的合力为F 合=F 1-F 2=[4-(2+2x)] N =(2-2x) N (1分) 作出F 合-x 图象如图所示:从图中可以看出,当x =0时,物体有最大加速度a 0 F0=ma 0a 0=F 0m =22m/s 2=1 m/s 2(2分)当x =2 m 时,物体也有最大加速度a 2.F 2=ma 2a 2=F 2m =-22 m/s 2=-1 m/s 2 负号表示加速度方向向左.(2分)(3)当物体的加速度为零时速度最大.从上述图中可以看出,当x =1 m 时,a 1=0,速度v 1最大. (1分) 从x =0至x =1 m 合力所做的功为W 合=12F 合x =12×2×1 J=1 J (1分)根据动能定理,有 E k1=W 合=12mv 21=1 J(2分)所以当x =1 m 时,物体的速度最大,为 v 1=2E k1m= 2×12m/s =1 m/s (1分) 答案 (1)0.5 m/s 2 (2)x =0时有最大加速度a 0,a 0=1 m/s 2;x =2 m 时,也有最大加速度a 2,a 2=-1 m/s 2,负号表示加速度方向向左 (3)x =1 m 时,物体的速度最大,最大为1 m/s 【强化训练5】 如图9甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),试求:图9(1)当t =1.5 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 从开始运动的1.5 s 内,电阻R 上产生的热量; (3)磁感应强度B 的大小.解析: (1)金属棒先做加速度减小的加速运动,t =1.5 s 后以速度v t 匀速下落,由题图乙知v t =11.2-7.02.1-1.5 m/s =7 m/s由功率定义得t =1.5 s 时,重力对金属棒ab 做功的功率 P G =mgv t =0.01×10×7 W=0.7 W(2)在0~1.5 s ,以金属棒ab 为研究对象,根据动能定理得 mgh -W 安=12mv 2t -0解得W 安=0.455 J闭合回路中产生的总热量Q =W 安=0.455 J 电阻R 上产生的热量Q R =RR +rQ =0.26 J(3)当金属棒匀速下落时,由共点力平衡条件得mg =BIL 金属棒产生的感应电动势E =BLv t 则电路中的电流I =BLv tR +r代入数据解得B =0.1 T答案 (1)0.7 W (2)0.26 J (3)0.1 T四、专题突破强化训练(限时:45分钟)一、单项选择题1. 一质点自x 轴原点O 出发,沿正方向以加速度a 运动,经过t 0时间速度变为v 0,接着以加速度-a 运动,当速度变为-v 02时,加速度又变为a ,直至速度变为v 04时,加速度再变为-a ,直至速度变为-v 08,….其v -t 图象如图1所示,则下列说法中正确的是( )图1A .质点运动方向一直沿x 轴正方向B .质点运动过程中离原点的最大距离为v 0t 02C .质点运动过程中离原点的最大距离为v 0t 0D .质点最终静止时离开原点的距离一定大于v 0t 0解析: 质点运动方向先沿x 轴正方向,2t 0时间后沿x 轴负方向,再沿x 轴正方向,往返运动,选项A 错误.质点运动过程中离原点的最大距离为v 0t 0,选项B 错误,C 正确.由题图结合数学知识可知,质点最终静止时离开原点的距离一定小于v 0t 0,选项D 错误.答案 C2.如图2所示,靠在竖直粗糙墙壁上的物块在t=0时由无初速度释放,同时开始受到一随时间变化规律为F=kt的水平力作用,用a、v、F f和E k分别表示物块的加速度、速度、物块所受的摩擦力、物块的动能,下列图象能正确描述上述物理量随时间变化规律的是( )图2解析:根据题述,物块与竖直墙壁之间的压力随时间增大,开始,物块从静止无初速度释放,所受摩擦力逐渐增大,物块做初速度为零、加速度逐渐减小的加速运动,达到最大速度后逐渐减小,选项A错误.由mg-μkt=ma,选项B正确.物块运动时所受摩擦力F f=μkt,速度减为零后F f=mg,选项C错误.物块动能E k=12mv2,随时间增大,但不是均匀增大,达到最大速度后逐渐减小,但不是均匀减小,选项D错误.答案 B3. 如图3所示,一轻弹簧竖直固定在水平地面上,弹簧正上方有一个小球自由下落.从小球接触弹簧上端O 点到将弹簧压缩到最短的过程中,小球的加速度a 随时间t 或者随距O 点的距离x 变化的关系图线是 ( )图3解析: 小球从接触弹簧上端O 点到将弹簧压缩到最短的过程中,所受弹力F =kx ,由牛顿第二定律,mg -kx =ma ,解得a =g -k m x ,小球先做加速度减小的加速运动,后做加速度增大的减速运动,故选项B 正确,A 、C 、D 错误.答案 B4. 如图4(a)所示,在竖直向上的匀强磁场中,水平放置一个不变形的铜圆环,规定从上向下看时,铜环中的感应电流I 沿顺时针方向为正方向.图(b)表示铜环中的感应电流I 随时间t 变化的图象,则磁场B 随时间t 变化的图象可能是下图中的 ( )图4解析:由题图(b)可知,从1 s到3 s无感应电流产生,所以穿过圆环的磁通量不变,所以排除C选项,对于A选项,从0到1 s,磁通量不变,感应电流也为零,所以可排除;从电流的方向看,对于B选项,从0到1 s,磁通量增大,由楞次定律可知感应电流沿顺时针方向,对于D选项,从0到1 s感应电流沿逆时针方向,故选项B 正确.答案 B5.如图5甲所示,圆环形线圈P用四根互相对称的轻绳吊在水平的天棚上,四根绳的结点将环分成四等份,图中只画出平面图中的两根绳,每根绳都与天棚成30°角,圆环形线圈P静止且环面水平,其正下方固定一螺线管Q,P和Q共轴,Q中通有按正弦函数规律变化的电流,其i-t图象如图乙所示,线圈P所受的重力为mg,每根绳受的拉力用F T表示.则( )甲乙图5A.在t=1.5 s时,穿过线圈P的磁通量最大,感应电流最大B.在t=1.5 s时,穿过线圈P的磁通量最大,此时F T=0.5mgC.在t=3 s时,穿过线圈P的磁通量的变化率为零D.在0~3 s内,线圈P受到的安培力先变大再变小解析:由题图可知,t=1.5 s时螺线管中的电流最大,磁场最强,所以穿过P环的磁通量最大,但是此时磁通量的变化率为零,故P环中没有感应电动势即没有感应电流,也就不受安培力的作用,所以选项A错,B正确,同理可知,选项C、D错误.答案 B6.如图6,静止在光滑地面上的小车,由光滑的斜面AB和粗糙的平面BC组成(它们在B处平滑连接),小车右侧与竖直墙壁之间连接着一个力传感器,当传感器受压时,其示数为正值,当传感器被拉时,其示数为负值.一个小滑块从小车A点由静止开始下滑至C点的过程中,传感器记录到的力F与时间t的关系图中可能正确的是 ( )图6解析:小滑块从小车A点由静止开始沿斜面(斜面倾角为θ)下滑时,对斜面压力等于mgcos θ,该力在水平方向的分力mgcos θsin θ,方向水平向右;小滑块由B点滑动到C点的过程,BC面对小滑块有向右的摩擦力,滑块对BC面有向左的滑动摩擦力,所以,传感器记录到的力F 随时间t 的关系图中可能正确的是D.答案 D 二、多项选择题7. 如图7所示,质量为m 的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F =mgsin θ;已知滑块与斜面间的动摩擦因数μ=tan θ,取出发点为参考点,下列图象中能正确描述滑块运动到最高点过程中产生的热量Q 、滑块动能E k 、势能E p 、机械能E 随时间t 、位移x 变化关系的是 ( )图7解析: 根据滑块与斜面间的动摩擦因数μ=tan θ可知,滑动摩擦力等于重力沿斜面向下的分力.施加一沿斜面向上的恒力F =mgsin θ,物体机械能保持不变,重力势能随位移x 均匀增大,选项C 、D 正确.产生的热量Q =F f x ,随位移均匀增大,滑块动能E k 随位移x 均匀减小,x =vt -12(gsin θ)t 2,选项A 、B 错误.答案 CD8. 一汽车沿直线由静止开始向右运动,汽车的速度和加速度方向始终向右.汽车速度的二次方v 2与汽车前进位移x 的图象如图8所示,则下列说法正确的是 ( )图8A .汽车从开始运动到前进x 1过程中,汽车受到的合外力越来越大B .汽车从开始运动到前进x 1过程中,汽车受到的合外力越来越小C .汽车从开始运动到前进x 1过程中,汽车的平均速度大于v 02D .汽车从开始运动到前进x 1过程中,汽车的平均速度小于v 02解析: 由v 2=2ax 可知,若汽车速度的二次方v 2与汽车前进位移x 的图象为直线,则汽车做匀加速运动.由汽车速度的二次方v 2与汽车前进位移x 的图象可知,汽车的加速度越来越大,汽车受到的合外力越来越大,选项A 正确,B 错误;根据汽车做加速度逐渐增大的加速运动,可画出速度图象如图所示,根据速度图象可得出,汽车从开始运动到前进x 1过程中,汽车的平均速度小于v 02,选项C错误,D 正确. 答案 AD9.如图9,在直角坐标系y轴上关于坐标原点对称的两点固定有两等量点电荷,若以无穷远处为零电势点,则关于x轴上各点电势φ随x坐标变化图线的说法正确的是 ( )图9A.若为等量异种点电荷,则为图线①B.若为等量异种点电荷,则为图线②C.若为等量正点电荷,则为图线②D.若为等量正点电荷,则为图线③解析:若为等量异种点电荷,x轴上各点电势φ相等,各点电势φ随x坐标变化的图线则为图线①,选项A正确,B错误.若为等量正点电荷,坐标原点电势最高,沿x轴正方向和负方向电势逐渐降低,各点电势φ随x坐标变化的图线则为图线③,选项C错误,D正确.答案AD10.图10甲中的变压器为理想变压器,原线圈匝数n1与副线圈匝数n2之比为10∶1,变压器的原线圈接如图乙所示的正弦式交流电,电阻R1=R2=R3=20 Ω和电容器C连接成如图甲所示的电路,其中,电容器的击穿电压为8 V,电压表为理想交流电表,开关S处于断开状态,则( )图10A .电压表的读数约为7.07 VB .电流表的读数约为0.05 AC .电阻R 2上消耗的功率为2.5 WD .若闭合开关S ,电容器会被击穿解析: 由变压器变压公式,副线圈输出电压最大值为20 V ,电压表的读数为U R2=202×2020+20 V≈7.07 V,选项A 正确;变压器输出功率为P 2=U 2I 2=U 22R 1+R 2=102240W =5.0 W ,U 1=2002V =100 2 V ,由P 1=U 1I 1=5.0 W 可得电流表的读数为240 A≈0.035 A,选项B 错误;电阻R 2上消耗的功率为P 22=2.5 W ,选项C 正确;若闭合开关S ,R 1和R 3并联部分电压最大值为203 V<8 V ,电容器不会被击穿,选项D 错误.答案 AC三、非选择题11.如图11甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4 Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨距为L=2 m,重力加速度g=10 m/s2.轨道足够长且电阻不计.图11(1)当R=0时,求杆ab匀速下滑过程中产生感应电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值P m;(4)当R=4 Ω时,随着杆ab下滑,求回路瞬时电功率每增大1 W的过程中合外力对杆做的功W.解析:(1)由题图乙可知,当R=0时,杆最终以v=2 m/s匀速运动,产生感应电动势E=BLv=0.5×2×2 V=2 V杆中电流方向从b→a(2)最大速度为v m,杆切割磁感线产生的感应电动势E=BLv m由闭合电路欧姆定律:I=ER+r杆达到最大速度时满足mgsin θ-BIL =0 解得:v m =mgsin θB 2L 2R +mgsin θB 2L 2r由题图乙可知:斜率为k =4-22 m/(s·Ω)=1 m/(s·Ω),纵截距为v 0=2 m/s即mgsin θB 2L 2r =v 0,mgsin θB 2L 2=k解得m =0.2 kg ,r =2 Ω (3)金属杆匀速下滑时电流恒定 mgsin θ-BIL =0 I =mgsin θBL =1 AP m =I 2R m =4 W(4)由题意:E =BLv ,P =E 2R +r得P =B 2L 2v 2R +rΔP =B 2L 2v 22R +r -B 2L 2v 21R +r由动能定理得W =12mv 22-12mv 21故W =m R +r2B 2L 2ΔP代入数据,解得W =0.6 J答案 (1)2 V ,电流方向由b→a (2)0.2 kg 2 Ω (3)4 W (4)0.6 J。