当前位置:
文档之家› 半导体材料第5讲-硅、锗晶体中的杂质
半导体材料第5讲-硅、锗晶体中的杂质
• 又因为: d(母合金密度)≈d(锗密度), • M合金的质量一般很小 • W锗+M合金≈W锗
M(母合金质量) W锗质量 M母合金质量 Cm(母合金中杂质浓度 ) C0(单晶中杂质浓度 ) d(母合金密度 ) d锗密度
M(母合金质量) W锗质量 Cm(母合金中杂质浓度 ) C0(单晶中杂质浓度 ) d(锗密度) d锗密度
M(母 合 金 质 量 ) W硅 质 量 C L 0(熔 硅 中 杂 质 浓 度 ) Cm(母 合 金 中 杂 质 浓 ) 度
如果蒸发效应很小,则掺杂公式为
M( 母 合 金 质 量 ) W硅 (CL2 CL1 ) Cm
三、杂质掺入的方法
• 在直拉法中掺入杂质的方法有共熔法 和投杂法两种。对于不易挥发的杂质如硼, 可采用共熔法掺入,即把掺入元素或母合 金与原料一起放在坩埚中熔化。 • 对于易挥发杂质,如砷、锑等,则放在 掺杂勺中,待材料熔化后,在拉晶前再投 放到熔体中,并需充入氩气抑制杂质挥发。 •
半导体材料
关荣锋:rongfengg@
第4章 硅、锗晶体中的杂质和缺陷
• 半导体材料中的杂质和缺陷对其性质具有重要 的影响。半导体硅、锗器件的制做不仅要求硅、 锗材料是具有一定晶向的单晶,而且还要求单晶 具有一定的电学参数和晶体的完整性。 • 单晶的电学参数通常是采用掺杂的方法,即在 单晶生长过程中加入一定量的杂质,并控制它们 在晶体中的分布来解决。 • 本章结合硅、锗单晶生长的实际,介绍掺杂技 术,然后介绍硅、锗单晶中缺陷的问题。
如果施主杂质占优势,则有:
电阻率 1 1 (施主杂质浓度 受主杂质浓度)所带电量 迁移率 (Nd o n o r Na c c e p t o)eμn r
如果受主杂质占优势,则有:
电阻率 1 1 (受主杂质浓度 施主杂质浓度)所带电量 迁移率 (Na c c e p t o Nd o n o r p )eμ r
影响单晶内杂质数量及分布的主要因素是: 原料中的杂质种类和含量 杂质的分凝效应 杂质的蒸发效应 生长过程中坩埚或系统内杂质的沾污 加入杂质量 这些因素的大小随材料和拉晶工艺而变动,应针对问题具 体分析。
• 1. 2. 3. 4. 5.
• • • •
直接硅单晶中杂质的掺入 一、掺杂量的计算 1、只考虑杂质分凝时的掺杂 直拉法生长晶体的过程,实际上是一个正常凝固的过程。如 果材料很纯,材料的电阻率ρ 与杂质浓度CS有如下关系: • ρ =1/CSeμ (4-3)μ 为电子(或空穴)迁移率 • 正常凝固的杂质分布为 • CS=kC0(1-g)k-1 (4-4) • 将4-3代入4-4式可算出在拉单晶时,拉出的单晶的某一位 置g处的电阻率与原来杂质浓度的关系:
•
霍尔电压,即l、2两点间的电位差为
UH bB
工作电流I与载流子电荷e、n型载流 子浓度n、迁移速率v及霍尔元件的 截面积bd之间的关系为I=nevbd,
UH IB KIB ned
式中K=1/(end),称该霍尔元件的灵敏度。如果霍尔元件是P型(即载流子是 空穴)半导体材料制成的,则K=l/(epd),其中p为空穴浓度。
2.杂质对材料电阻率的影响
• 半导体材料的电阻率一方面与载流子密度有关,另一方面又 与载流子的迁移率有关。 • 同样的掺杂浓度,载流子的迁移率越大,材料的电阻率越 低。如果半导体中存在多种杂质,在通常情况下,会发生杂质 补偿,可以其电阻率与杂质浓度的关系可近似表示为:
电 阻 率 1 有效杂质浓度所带电量 迁移率
导电性质影响较小,主要起复合中心或陷阱的作用。
•
杂质在硅、锗中的能级与它的原子构造,在晶格中所 占的位置有关。 • 如Ⅲ族和V族杂质在锗中占替代式晶格位置,在它们 与邻近的锗原子形成四个共价键时,缺少或剩余一个价电 子。如它们电离,可接受或提供一个电子,即提供一个受 主或施主能级。 • Ⅱ族的Zn或Cd杂质原子进入锗中也居替代位置,因其 价电子为2,在成键时它们可从邻近的锗原子接受两个电 子,即提供两个受主能级,这两个能级在禁带中的位置是 不同的,较低的受主能级是在中性的Zn或Cd原子上放上 一个电子,而较高的受主能级则是在已具有一个负电荷的 Zn或Cd离子上再放上一个电子。 • I副族元素金则有三个受主能级和一个施主能级。这种 多重能级的作用与温度及材料中存在的其他杂质的类型和 浓度等有关系。
• 直拉法生长单晶的电阻率的控制 • • 1.直拉法单晶中纵向电阻率均匀性的控制 影响直拉单晶电阻率的因素有杂质的分凝、蒸发、沾污 等。对于K<1的杂质,分凝会使单晶尾部电阻率降低;而 蒸发正好相反,蒸发会使单晶尾部电阻率升高; 坩埚的污染(引入P型杂质)会使N型单晶尾部电阻率增 高,使P型单晶尾部电阻率降低。
对一批新的多晶原料和坩埚,不掺杂拉单晶,测量其
导电类型和头部电阻率ρ,并由ρ-N图找出对应的载流子 浓度即单晶中的杂质浓度Cs。此CS是多晶硅料、坩埚和系
统等引入的沾污共同影响的数值。
•②确定熔体中的来源于原料和坩埚的杂质浓度CL1
熔体
C L1
Cs 1 K
单晶
• ③求对应于所要求的电阻率,理论上熔体中的杂质浓度CL2
载流子浓度为:
n(或p) 工作电流 磁场强度 IB 霍尔电压 电荷 器件厚度 U Hed
课本图4—1示出了在室温下(300K)硅、锗的电阻率值随施主或受主浓度 的变化关系。在半导体材料和器件生产中,常用这些曲线进行电阻率 与杂质浓度(ρ-N)换算。
硅、锗晶体的掺杂
• • 通过掺杂的方法来控制半导体材料的电学参数。 掺杂方式:在拉晶过程中掺杂,是将杂质与纯材料一 起在坩埚里熔化或是向已熔化的材料中加入杂质,然后 拉单晶。
杂质能级
•
杂质对硅、锗电学性质的影响与杂质的类型和它们的能
级在禁带中类是周期表中Ⅲ族 或V族杂质,它们的电离能低,对材料的电导率影响大, 起受主或施主的作用。
•
另一类杂质是周期表中除Ⅲ族和V族以外的杂质,特
别是I副族和过渡金属元素,它们的电离能大,对材料的
通过试拉单晶头部电阻率求出。其公式为:
• 试拉单晶重×单晶头部杂质浓度=掺杂母合金量×母合 金浓度×K(杂质的分凝系数)
• 单晶头部浓度由ρ—N曲线查得。
实际生产中的近似估算
• 实际生产中由于多晶硅、坩埚来源不同,各批料的质量波 动较大,由拉晶系统引入的沾污亦不相同,误差很大。因 此,常用一些经验估算方法。下面介绍在真空下拉制N型 中、高阻硅单晶掺杂量的估算法。 • ①空白试验,测ρ,根据ρ-N图确定载流子浓度N=CS1
•
上两式表明,在有杂质补偿的情况下,电阻率 主要由有效杂质浓度决定。但是总的杂质浓度 NI=NA+ND也会对材料的电阻率产生影响,因为 当杂质浓度很大时,杂质对载流子的散射作用会 大大降低其迁移率。 例如,在硅中Ⅲ、V族杂质,当N>1016cm-3时, 对室温迁移率就有显著的影响,这时需要用实验 方法(Hall法)来测定材料的电阻率与载流子浓度。
ρ
1 eμKC0(1 g)( 1k )
• 如果要拉w克锗,所需要加入的杂质量m为:
m C0 wA 1 wA dN0 euK(1 g )(1k ) dN0
思考: 为什么会是 m=C0wA/dN0这一公式? 而不是 m=wC0
C0:杂质浓度,每立方米晶体中所含的杂质数目 单位: 个· -3 cm w :单晶质量 A: 单晶的摩尔质量 d: 单晶的密度, N0: 阿佛加德罗常数, 单位:g 单位: g ·mol-1 单位:g ·cm-3 单位 : 个·mol-1
杂质浓度 单晶质量 摩尔质量 杂质质量 密度 阿佛加德罗常数
个cm-3 g gmol-1 g -3 -1 gcm 个mol
•
因为掺杂量一般较少,如用天平称量会有较大误差,所 以除非拉制重掺杂的单晶,一般都不采用直接加入杂质的 办法,而是把杂质与锗(硅)先做成合金,(称之为母合金), 拉单晶时再掺入,这样可以比较准确的控制掺杂量。
M(母合金质量)
W锗质量 C0(单晶中杂质浓度 ) Cm(母合金中杂质浓度 )
• 母合金可以是单晶(或多晶),通常在单晶炉内掺杂拉制, 测量单晶电阻率后,将电阻率曲线较平直部分依次切成 0.35~0.40mm厚的片,再测其电阻率,清洗后编组包装顺 次使用。 • 母合金中杂质的含量用母合金浓度(cm-3)来表示,其大小可
4-2.2 单晶中杂质均匀分布的控制
• 在生长的单晶中,杂质的分布是不均匀的。这种 不均匀性会造成电阻率在纵向和径向上不均匀, 从而对器件参数的一致性产生不利影响。
• 。单晶径向电阻率的差异会使大面积器件电流分 布不均匀,产生局部过热,引起局部击穿;降低 耐压和功率指标。因此电阻率均匀性也是半导体 材料质量的一个指标。 • 下面讨论用直拉法生长晶体时,控制其电阻率均 匀性的几个方法。
•
• 对于硅,因有蒸发及其他因素影响可利用。 • 例如由变拉速拉出的晶体尾部电阻率较低,可把 晶体尾部直径变细,降低拉速,增加杂质蒸发使 CL变小,而改善晶体电阻率的均匀性。 • 反之,如单晶尾部电阻率高,可增加拉速,降 低真空度减少杂质蒸发使电阻率均匀。
若所要求硅单晶是N型,电阻率范围ρ上~ρ下,取ρ上相应 于单晶头部电阻率,再由ρ—N图找出相应杂质浓度CS2,求CS2 对应的熔体中杂质浓度
C L2 Cs 2 K
• ④求熔体中实际杂质浓度CL
•
考虑原料与坩埚引入杂质的影响(杂质补偿),在
拉制电阻率ρ上~ ρ下范围单晶时,深中实际杂质
浓度应为
• CL=CL2-CL1 (试拉单晶为同型)
• 课本例2 有锗W(g),拉制g处电阻率为ρ的单晶,应加入 杂质浓度为Cm的母合金量为多少? • (设原料锗中杂质量远小于合金中杂质的量) • 解:因为杂质在母合金中的总数和在熔体中的总数相等。