当前位置:文档之家› 半导体照明技术(第六讲)孟

半导体照明技术(第六讲)孟









第四节
异质结构
异质结是由两块不同带隙能量的单晶半导体连接而成的。 异质结分为同型(n-n或p-p)和异型(p-n)异质结两种。理 想异质结的界面是突变的,实际的异质结存在一个缓变区,虽 然很小,不足10μ m,但会改变一些异质结的特性,却不会破 坏有用性质。 理想的异质结是由晶格参数失配很小(小于0.1%的)的 材料制成,在发光器件中有如下作用: 1、同型异质结可以由透明的(带隙较高)导电衬底和包含器 件的有源区的外延层构成。 2、同型异质结能够提供一个很靠近有源区的透明层,以降低 如果采用一个自由表面时的表面复合速度。起钝化作用。
式中,Kθ 为声子的能量,也就是晶格振动的热能。
注:声子就是晶格振动的简正模能量量子。







2、通过杂质能级的复合 首先含有杂质的半导体在常温附近大部分的杂质被离子化, 在空的杂质能级上导带的电子被俘获;其次,必须使杂质的能 级俘获的电子再吸收热能,在回到导带之前和空穴复合。 3、相邻能级的复合
(2)热击穿(不可逆)
反向电压
反向电流
结温
热激发







3、PN结的电容效应 在PN结内的耗尽层中,存在相对的正负电荷,根据外加电压 能改变耗尽层的宽度,因而电容量也随之变化,因此PN结具有 的电容效应。 在突变结的情况下:
C j C0 (1
V

V
)

1 2
在缓变结的情况下:
C j C0 (1
未饱和共价键,则电子空 穴成对消失,称为复合。
本征激发和复合的过程







(四)杂质半导体
1、N型半导体 四价的本征半导体(Si、Ge等),掺入少量五价的杂质元素(如 P、As等)形成电子型半导体,称N型半导体。也称电子型半导体。
因五价杂质原子中只
有四个价电子能与周围四 个半导体原子中的价电子 形成共价键,而多余的一 个价电子因无共价键束缚
最后,多子的扩散和少子的漂移达
止电子和空穴进一步扩散,记作 E阻 。
到动态平衡。对于P型半导体和N型半 导体结合面,离子薄层形成的空间电 荷区称为PN结。在空间电荷区,由于 缺少多子,所以也称耗尽层。
E阻
P-N结






P-N结

2、PN结处存在电势差Uo。
电势曲线
它阻止P区 带正电的空穴进 一步向N区扩散;







3、同型异质结能形成限制载流子的势垒来有效地缩短载流 子的扩散长度,从而缩短复合区。
4、异型异质结可通过改变两侧带隙能量的相对大小来提高 电子或者空穴的注入效率。
5、同型或异型异质结提供一个折射率突变,从而形成一个 光波导的界壁。 6、同型异质结可以在金属接触的表面提供一层带隙能量小 的材料,有助于制作欧姆接触。







作业:
1、如何高效地产生电子和空穴?
2、以什么方式复合产生高效的光辐 射?
这一现象称为本征激发,也称热激发。

2、空穴






自由电子产生的同时,在其原来的共价键中就出现了一
个空位,原子的电中性被破坏,呈现出正电性,其正电量与 电子的负电量相等,人们常称呈现正电性的这个空位为空穴。 3、电子空穴对
因热激发而出现的自
由电子和空穴是同时成对 出现的,称为电子空穴对。
游离的部分自由电子落入
击穿电压
I (微安) -30 -20
V(伏)
-10
反向
-20
-30







(1)电击穿(可逆) 齐纳(Zener)击穿: 较强的内电场将空间电荷区共价键中的价电子拉出。产 生大量的电子空穴对,使空间电荷区的高阻性变差而击穿。 掺杂浓度高易击穿。 雪崩击穿:
少数载流子在强电场作用下碰撞电离并产生连锁效应, 造成空间电荷区中的载流子数目剧增,使Is突然增大。
而很容易形成自由电子。
N型半导体结构示意图







在N型半导体中自由电子是多数载流子,它主要由杂质原子提
供;空穴是少数载流子, 由热激发形成。 提供自由电子的五价杂质原子因带正电荷而成为正离子,因
此五价杂质原子也称为施主杂质。
2、P型半导体
在本征半导体中掺入三价
杂质元素(如硼[B]、铟[In] 等)形成了P型半导体,也称







第四章
半导体的激发与发光
半导体发光二极管能将电能直接转变为光能。其原理是电 能造成比热平衡时更多的电子和空穴,同时,由于复合而减
少电子和空穴,造成新的热平衡,在复合过程中,能量以光
的形式放出。 本章主要介绍PN结及其特性、注入载流子的复合、异质结 构等内容。







第一节 半导体PN结及其特性
为空穴型半导体。因三价杂
质原子在与硅原子形成共价 键时,缺少一个价电子而在
共价键中留下一个空穴。
P型半导体的结构示意图







P型半导体中空穴是多数载流子,主要由掺杂形成; 电子是少数载流子,由热激发形成。
空穴很容易俘获电子,使杂质原子成为负离子,三价杂质因
而也称为受主杂质。 3、N型化合物半导体 例如,化合物GaAs中掺Te(碲 ),六价的Te替代五价的As可 形成施主能级,成为n型GaAs杂质半导体。






电子能量变换成热能的过程称为俄歇过程。它是非辐射型的 复合过程。俄歇过程是在自由载流子的浓度比较高的情况下和有 晶格缺陷的情况下发生。 3、表面复合
在晶体表面,可以想象到存在着比内部还要多的缺陷,因此, 在表面引起的各种非辐射性复合的概率比晶体内部还要高。
发光二极管的发光效率、寿命、可靠性都与表面密切相关。
三、非辐射型复合
1、阶段地放出声子的复合 作为半导体发光材料,从发光波长来考虑,禁带宽度必须在 1eV以上,而声子的能量在0.06eV左右,导带的电子落入满带时, 电子的能量假如全部生成声子,则必须有20个以上的声子生成, 这么多的声子同时生成的概率几乎等于零。因此,声子也就阶段 性地产生。

2、俄歇过程
一、半导体基础知识 (一)半导体的晶体结构
硅和锗是四价元素,在原
子最外层轨道上的四个电子
称为价电子。它们分别与周 围的四个原子的价电子形成
共价键。共价键中的价电子
为这些原子所共有,并为它 们所束缚,在空间形成排列 共价键
硅原子空间排列 及共价键结构平面示意图
Hale Waihona Puke 有序的晶体。半导





(二)本征半导体: 纯净的结构完整的半导体。

)

1 3
式中C0是无外加电压时耗尽层的电容量。







第二节
一、复合的种类
注入载流子的复合
复合分为两大类,一个是伴随光的辐射的复合(辐射型复合); 一个是不伴随光辐射的复合(非辐射型复合)。前者是由于空穴和 电子的复合以光能的形式辐射能量,即对发光二极管来说是有用 的复合,不伴随光辐射的复合对发光二极管来说是有害的复合。
(2) 反向偏压 在PN结的P型区接电源负极,N型区接电源正极, 叫反向偏压。
E
I
p型 n型
E阻
阻挡层势垒增大、变宽, 不利于空穴向N区运动, 也不利于电子向P区运动, 没有正向电流。 PN结表现 为大电阻。 但是,由于少数载流子 的存在,会形成很弱的反 向电流,这个电流也称为 反向饱和电流。







第三节 辐射与非辐射复合之间的竞争
少数载流子既可辐射复合也可非辐射复合,二者之间的竞
争决定了发光二极管的内量子效率。
i
1 N t 0 p Et E L 1 exp N I n KT
由式可见,发光中心密度大,非辐射复合中心密度小,发光中 心浅、自由电子密度越大,则内量子效率越高。
电子的波动函数跨越两个能级,引起电子的跃迁,这样两
个能级间的能量差以光的形式辐射出来。 4、激子复合 (1)激子:激子是库仑引力束缚在一起的电子—空穴对,也 是一种激发的能量状态。自由激子能在晶体内部运动,而束缚
激子则可受到施主、受主、等电子陷阱、晶体缺陷等的束缚。







(2)在半导体晶体中,除了固定在晶格原子上的电子和能自由 地在晶体中运动的电子外,还有处于它们中间能量的固定在格子 上的电子,这就是处于激发态的电子,随之与空穴产生空穴—电 子对,这个激子就可因扩散而转移到另一个原子上去。这个带有 能量的电子—空穴对由于复合释放出能量,以光的形式向外辐射。 (如GaP发红光、绿光)







PN结正偏时,呈现低电阻,
具有较大的正向扩散电流;
IF
PN结反偏时,呈现高电阻, 具有很小的反向漂移电流。
反 偏
由此可以得出结论:PN结具 有单向导电性。
IR
I F I R
相关主题