本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==仿真实验偏振光实验报告篇一:偏振光实验报告仿真课程:系别:专业班级:大学物理仿真实验电信学院实验报告------ 物理仿真实验实验名称:偏振光实验实验报告日期: 201X 年 11 月 28 日学号:*******************姓名: *******教师审批签字1.实验原理:偏振光原理:按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.实际中最常见的光的偏振态大体为五种,即自然光、线偏振光、部分偏振光、圆偏娠光和椭圆偏振光.1. 自然光是各方向的振幅相同的光。
对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等。
2.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个方向振动。
起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件。
常见的起偏或检偏的元件构成有两种:偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.光学棱镜:如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的;3.部分偏振光:除了自然光和线偏振光外,还有一种偏振状态介于两者之间的光.如果用偏振片去检验这种光的时候,随着检偏器透光方向的转动,透射光的强度既不象自然光那样不变,又不象线偏振光那样每转90o。
交替出现强度极大和消光.其强度每转90o也交替出现极大和极小,但强度的极小不是0(即不消光)。
从内部结构看,这种光的振动虽然也是各方向都有,但不同方向的振幅大小不同,具有这种特点的光,叫做部分偏损光我们假定波是沿z轴传播的,在图中它垂直纸面迎面而系.这时若电矢量按逆时针方向旋转,我们称为左旋圆偏振光。
若顺时针旋转,称为右旋圆偏振光。
5.椭圆偏振光电矢量的端点在波面内描绘的轨迹为一椭圆的光,叫椭圆偏振光。
椭圆运动也可看成是两个相互垂直的线偏振光的合成,只是它们的振幅不等,或位相差不等于±π/2。
椭圆长、短轴的大小和取向,与振幅Ax, Ay和位相差都有关系。
可以看出线偏振光和圆偏振光都是椭圆偏振光的特例,常用波晶片把椭圆偏振光转换为线偏振光。
椭圆偏振光退化为圆偏振光的条件是:Ax = Ay 和=±π/2。
椭圆偏振光退化为线偏振光的条件是:Ax = 0,或Ay = 0,或=0,±π。
椭圆偏振光也有左、右旋之分,其定义与前面圆偏振光的定义相同。
波晶片:又称位相延迟片,是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度vo,ve不同,所以造成o光和e光通过波晶片的光程也不同.当两光束通过波晶片后o光的位相相对于e光多延迟了Δ=2π(n0-n1)d/λ,若满足(ne-no)d=±λ/4,即Δ=±π/2我们称之为λ/4片,若满足(ne-no)d=±λ/2,即Δ=±π,我们称之为λ/2片,若满足(ne-no)d=±λ,即Δ=2π我们称之为全波片。
布儒斯特定律:自然光以任意入射角i入射于两种各向同性的透明介质的分界面商。
一般情况下,反射光和入射光分别是部分偏振光,垂直于入射面振荡的电矢量在反射光中占主要地位。
在入射面上振荡的电矢量在折射光中占主要地位。
有一特殊入射角b,当i =b 时,反射光线垂直于折射光线(i +b = π/2),反射光变成完全偏振光。
该现象最早在1815年为布儒斯特所发现,我们称之为布儒斯特定律,b叫做布儒斯特角,满足下列方程:其中n1,n2是相邻两种媒质的折射率。
改变射向晶体的入射光线的方向,可以找到一个确定的方向,沿着这一方向,o 光和e光传播速度相等,折射率相同,不产生双折射现象,这个方向叫做光轴。
只有一个光轴的晶体叫做单轴晶体(如方解石、石英等),有两个光轴的晶体称为双轴晶体(如云母、硫磺等)。
包含光轴和任一光线的平面,称做对应于该光线的主平面。
O光的电矢量的振动方向垂直于主平面。
e光电矢量的振动方向在它的主平面内。
本实验用来获得偏振光的仪器叫做格兰棱镜。
格兰棱镜是由两面三块方解石棱镜构成的,二棱镜间的空气隙,方解石的光轴平行于棱镜的棱。
自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e光透过棱镜射出马吕斯定律:马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为I1 = I0 cos2α,其中的a是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角:2.实验仪器:半导体激光器,起偏器,检偏器,1/4波片,光电探测器,光电探测器台,光电流放大器,光屏,光具座。
3.实验内容:根据马吕斯定律测定光电池的线性响应:P1:起偏器,方位不变P2:检偏器,改变其方位以得到不同强度的偏振光,用来测定硅光电池的线性响应 B:分束板,使激光器的光束部分投射(I0),部分反射(I1)D1:光源光强监视器,包括硅光电池及光电流检测装置,用以I0的变化。
D2:当P2方位变化时,偏振光强I2依照马吕斯定律改变,I2的变化将由D2测定。
测量数据:ψθ I1 I2I1 ,I2 :D1,D2的光电流读数,为起偏器P1后平面偏振光方位与检偏器P2后平面偏振光方位的夹角。
:P2盘读数根据测量结果,绘出与关系曲线,是否呈线性关系。
根据布儒斯特定律测定介质的折射率:利用布儒斯特定律时,只能在入射光为P分量(电矢量平行入射面)时,才能得到反射率为零的布儒斯特角。
故实验分为两步进行:A. 确定起偏器的方位,在此方位使入射到样品表面的入射光(即起偏后的偏振光)的偏振方向恰好为P分量。
实验方法如下:1. P1在某一方位时,转动样品面使反射光的反射角在50o~60o之间,移动光屏使得反射光点落于其上,仔细观察光屏上反射光的强弱变化。
选定出射光点最暗的某一位置做下一步调整。
2.然后旋转P1的角度,观察光屏上反射光点的亮暗变化。
找到一个光点最暗的P1方位角。
3.再依次重复1,2的步骤,知道反射光强近于零。
此时P1的方位角恰好使出射平面偏振光与入射平面相重合,即为P分量。
B. 根据布儒斯特定律确定介质材料的折射率。
篇二:偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图1、P图2所示:P1 P2 A0 θ图1 图图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。
P2与P1夹角为?,因此经P2后2的线偏振光振幅为A?A0cos?,光强为I?A0cos2??I0cos2?,此式为马吕斯定律。
实验数据及图形:从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。
偏振片波片偏振片图3 分振动面干涉装置考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,I0(sin22?)(1?cos?);当M∥N时,即两个偏振4出射光强为:I?? 片的透振方向平行时,出射光强为:I//?I0(1?2sin2?cos2??2sin2?cos2?cos?)。
其中θ为波片光轴2与M透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。
改变θ、δ中的任何一个都可以改变屏幕上的光强。
当δ=(2k+1)π(1/2波片)时,cosδ=-1,I??出射光强最大,I//?02sin22?,I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4I??波片)时,cosδ=0,I0I(sin22?),I//?0(2?sin22?)。
44特别地,利用1/4波片我们还可以得到圆偏振光和椭圆偏振光。
当θ=45度时,得到圆偏振光,此时让偏振片N旋转一周,屏幕上光强不变。
一般情况下,得到的是椭圆偏振光,让偏振片N旋转一周,屏幕上的光斑“两明两暗”。
实验结果:半波片实验数据表:1/4波片实验数据:结论:(来自: 在点网)线偏振光通过1/4波片后可能变成圆偏振光,椭圆偏振光也有可能仍是线偏振光。
实验3. 旋光效应实验原理:线偏振光通过某些物质的溶液后,偏振光的振动面将旋转一定的角度,这种现象称为旋光现象。
旋转的角度称为该物质的旋光度。
通常用旋光仪来测量物质的旋光度。
溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。
当其它条件均固定时,旋光度与溶液浓度C呈线性关系即???C(5-1)比例常数与物质旋光能力、溶剂性质、样品管长度、温度及光的波长等有关,C为溶液的浓度。
物质的旋光能力用比旋光度即旋光率来度量,旋光率用下式表示:???t???l?C(5-2)(5-2)式中,右上角的t表示实验时温度(单位:℃),是指旋光仪采用的单色光源的波长(单位:nm),θg/100mL)。
由(5-2)式可知:偏振光的振动面是随着光在旋光物质中向前进行而逐渐旋转的,因而振动面转过角度θ透过的长度l成正比。
振动面转过的角度θ不仅与透过的长度l成正比,而且还与溶液浓度C成正比[14]。
如果已知待测溶液浓度C和液柱长度l,只要测出旋光度θ就可以计算出旋光率。
如果已知液柱长度为l固定值,可依次改变溶液的浓度C,就可以测得相应旋光度θ。
并作旋光度与浓度的关系直线θ~C,从直线斜率、液桩长度l及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性为测得的旋光度(0),l为样品管的长度(单位:dm),C为溶液浓度(单位:溶液的旋光度θ,确定溶液的浓度C。
旋光性物质还有右旋和左旋之分。
当面对光射来方向观察,如果振动面按顺时针方向旋转,则称右旋物质;如果振动面向逆时针方向旋转,称左旋物质。
测量葡萄糖水溶液的浓度将已经配置好的装有不同的容积克浓度(单位:g/100mL)的葡萄糖。