第八章 电解质溶液一、基本内容电解质溶液属第二类导体,它之所以能导电,是因为其中含有能导电的阴、阳离子。
若通电于电解质溶液,则溶液中的阳离子向阴极移动,阴离子向阳极移动;同时在电极/溶液的界面上必然发生氧化或还原作用,即阳极上发生氧化作用,阴极上发生还原作用。
法拉第定律表明,电极上起作用的物质的量与通入的电量成正比。
若通电于几个串联的电解池,则各个电解池的每个电极上起作用的物质的量相同。
电解质溶液的导电行为,可以用离子迁移速率、离子电迁移率(即淌度)、离子迁移数、电导、电导率、摩尔电导率和离子摩尔电导率等物理量来定量描述。
在无限稀释的电解质溶液中,离子的移动遵循科尔劳乌施离子独立移动定律,该定律可用来求算无限稀释的电解质溶液的摩尔电导率。
此外,在浓度极稀的强电解质溶液中,其摩尔电导率与浓度的平方根成线性关系,据此,可用外推法求算无限稀释时强电解质溶液的极限摩尔电导率。
为了描述电解质溶液偏离理想稀溶液的行为,以及解决溶液中单个离子的性质无法用实验测定的困难,引入了离子强度、离子平均活度、离子平均质量摩尔浓度和平均活度因子等概念。
对稀溶液,活度因子的值可以用德拜-休克尔极限定律进行理论计算,活度因子的实验值可以用下一章中的电动势法测得。
二、重点与难点1.法拉第定律:nzF Q =,式中法拉第常量F =96485 C·mol -1。
若欲从含有M z +离子的溶液中沉积出M ,则当通过的电量为Q 时,可以沉积出的金属M 的物质的量n 为:F Q n Z +=,更多地将该式写作FQn Z =,所沉积出的金属的质量为:M F Q m Z =,式中M 为金属的摩尔质量。
2.离子B 的迁移数:B BB Q I t Q I ==,B B1t =∑ 3.电导:lAκl A R G ρ=⋅==11 (κ为电导率,单位:S·m -1) 电导池常数:cell lK A=4.摩尔电导率:m m V cκΛκ==(c :电解质溶液的物质的量浓度, 单位:mol·m -3,m Λ的单位:2-1S m mol ⋅⋅)5.科尔劳乌施经验式:m m (1ΛΛ∞=-6.离子独立移动定律:在无限稀释的电解质-+ννA C 溶液中,m m,m,Λνν∞∞∞++--=Λ+Λ,式中,+ν、-ν分别为阳离子、阴离子的化学计量数。
7.奥斯特瓦尔德稀释定律:设m Λ为弱电解质-+ννA C 浓度为c 时的摩尔电导率,∞mΛ为该电解质的极限摩尔电导率,则该弱电解质的解离度为∞≈mmΛΛα若弱电解质为1-1价型或2-2价型,则此时弱电解质化学式为CA ,其解离平衡常数为:cc K ⋅-=αα122m θm m m ()c c ΛΛΛΛ∞∞=⋅-该式称为奥斯特瓦尔德稀释定律。
8.电解质-+ννA C 的溶液中的离子平均质量摩尔浓度±m 和离子平均活度因子±γ:-+±-+=νννm m m ,-+±-+=νννγγγ 式中,-++=ννν9.电解质-+ννA C 的溶液中阴、阳离子的活度:m m a +++=γ,m m a ---=γ 10.电解质B(-+ννA C )的溶液的活度a B 及离子平均活度±a :B a a a a ννν+-==+-±)(mm a ±±±=γ11.离子强度:21i i2iI m z=∑12.德拜-休克尔极限公式:i i lg γAz =- (I <0.01mol ·kg -1)I z Az γ-+-=±lg (I <0.01mol ·kg -1) IaB I z Az γ+-=-+±1lg (I <0.1mol ·kg -1)三、精选题及解答例8-1 298.15K 及101325Pa 下电解CuSO 4水溶液,当通入的电量为965.0C 时,在阴极上沉积出2.859×10-4kg 的铜,同时在阴极上有多少H 2放出? 解 在阴极上发生的反应:Cu(s)e (aq)Cu 21221−→−+-+(g)H e (aq)H 221−→−+-+在阴极上析出物质的总物质的量为mol 101.000}mol 96485965.0{2t -⨯==n 而 )H (Cu)(22121t n n n += mol 108.999}mol 21063.54102.859 {Cu)(33-421--⨯=⨯⨯=n 故mol101.00 }mol 108.99910{1.000)H (332221---⨯=⨯-⨯=nmol 105.00}mol 101.00{)H ()(H 4321221212--⨯=⨯⨯==n n 35342H m 101.22 }m 101325(298.15)(8.314))10(5.00{ )(H 2--⨯=⨯⨯⨯==pRT n V【点评】 同一电极上发生多个反应时,通过该电极的电流为各反应电流之和,本题中公式)H (Cu)(22121t n n n +=就是该思想的具体体现。
此外,本题未告知水在该温度下的饱和蒸气压,因此在计算氢气的体积时用外压代替氢气的压力。
例8-2 用界面移动法测定H +的电迁移率时,751s 内界面移动4.00×10-2m ,迁移管两极间的距离为9.60×10-2m ,电势差为16.0V ,试计算H +的电迁移率。
解 H +的移动速率为1512s m 105.33s }m 751104.00{)(H ----+⋅⨯=⋅⨯=r 由 lEU r d d )(H )(H++=得 11271121-251V s m 103.20 V s m })109.616.0(105.33{ d d )(H )(H --------++⋅⋅⨯=⋅⋅⨯⨯⨯==)lE (r U 【点评】 本题中离子在电场中移动的速率的定义式是关键。
例8-3 在291.15K 时,将0.100mol·dm -3的NaCl 溶液充入直径为2.00×10-2m 的迁移管中,管中两个电极(涂有AgCl 的Ag 片)的距离为0.200m ,电极间的电势差为50.0V 。
假定电势梯度很稳定,并已知291.15K 时Na +和Cl -的电迁移率分别为3.73×10-8 m 2·s -1·V -1和5.78×10-8 m 2·s -1·V -1,试求通电30min 后,(1)各离子迁移的距离;(2)各离子通过迁移管某一截面的物质的量;(3)各离子的迁移数。
解 (1) 因为d d (Na )(Na )(Cl )(Cl )d d E Er U , r U l l++--==,所以 82d (Na )(Na )(Na )d 50.0 {(3.7310)()(1800)}m 0.2001.6810mE l r t U t l +++--===⨯⨯⨯=⨯ ---82(Cl )(Cl )(Cl )50.0 {(5.7810)()(1800)}m 0.2002.6010mdE l r t U t dl --===⨯⨯⨯=⨯ (2)222234(Na )π(Na )(Na ){3.14(1.0010)(1.6810)(0.10010)}mol 5.2810moln r l c +++---==⨯⨯⨯⨯⨯⨯=⨯222234(Cl )π(Cl )(Cl ){3.14(1.0010)(2.6010)(0.10010)}mol 8.1610moln r l c ------==⨯⨯⨯⨯⨯⨯=⨯(3)0.393108.16105.28105.28 )(Cl )(Na )(Na )(Na 444=⨯+⨯⨯=+=----+++n n n t0.607108.16105.28108.16 )(Cl )(Na )(Cl )(Cl 444=⨯+⨯⨯=+=----+--n n n t或 0.6070.3931)(Na 1)(Cl =-=-=+-t t【点评】本题中离子的迁移数以及离子在电场中运动的速率的定义式是关键。
例8-4 298.15K 时,某电导池中充以0.01000mol·dm -3KCl 溶液,测得其电阻为112.3Ω,若改充以同浓度的溶液X ,测得其电阻为2184Ω,试求溶液X 的电导率和摩尔电导率。
已知298.15K 时,0.01000mol·dm -3KCl 溶液的电导率为0.14106S·m -1,溶剂水的电导率可以忽略不计。
解 11cell m 15.84}m (112.3)(0.14106){--=⨯=⋅=R K κ溶液X 的电导率为131cell m S 107.253m }S 218415.84{(X)(X)---⋅⨯=⋅==R K κ 溶液X 的摩尔电导率为32-142-1m 3(X)7.25310(X){}S m mol 7.25310S m mol 0.0100010c κ--⨯Λ==⋅⋅=⨯⋅⋅⨯【点评】求出电导池常数是关键,计算摩尔电导率时要注意正确选择电解质溶液浓度的单位。
例8-5 某电导池内装有两个半径为2.00×10-2 m 的相互平行的Ag 电极,电极之间距离为0.120m 。
若在电解池内装满0.1000mol·dm -3AgNO 3溶液,并施以20.0V 的电压,测得此时的电流强度为0.1976A 。
试计算该溶液的电导、电导率、摩尔电导率及电导池常数。
解 U IR G ==1 S 109.88}S 20.00.1976{ 3-⨯==cell 11-220.120{ }m 95.5m 3.14(2.0010)l K A--===⨯⨯1-1-3cellm S 0.944 m (95.5)}S )10(9.88{ ⋅=⋅⨯⨯==-GK κ1-231-23m mol m S 1044.9mol m }S 100.10000.944{⋅⋅⨯=⋅⋅⨯==-c Λκ 【点评】本题和上一题涉及到的均是电解质溶液的电导、电导率和摩尔电导率之间的相互关系以及电导池常数等基本问题。
例8-6 在298.15K 时测得不同浓度的LiCl 水溶液的电导率数据如下:c/(mol·m -3)1.00000.7500 0.5000 0.3000 0.1000 κ/(10-2S·m -1)1.12400.84550.56580.34070.1142试用外推法求LiCl 水溶液的极限摩尔电导率。
解 在浓度极稀时,强电解质的m Λ与c 有如下线性关系m m 1ΛΛ()∞=- (1)由实验数据,可算出一系列c 及m Λ值(后者由公式m cκΛ=求算):213-)m m ol /(⋅c1.000 0.8660 0.7071 0.5477 0.3162 22-1m 10/S m mol Λ⋅⋅1.12401.12731.13161.13571.1420作m Λ~c 关系图并外推得到m Λ∞=1.150⨯10-2-12mol m S ⋅⋅【点评】本题为典型的求算强电解质溶液的m Λ∞的实验方法,关键是使用强电解质的m Λ与c 间的线性关系,然后使用所作之图外推而得c →0时的摩尔电导率即为所求。