传感器与检测技术电阻应变式压力传感器的设计电阻应变式压力传感器的设计1.、方案设计原理框图如图一所示数显表头低通滤波相敏检波U 过零比较器2.2应变片检测原理电阻应变片(金属丝、箔式或半导体应变片)粘贴在测量压力的弹性元件表面上,当被测压力变化时,弹性元件内部应力变形,这个变形应力使应变片的电阻产生变形,根据所测电阻变化的大小来测量未知压力,也实现本次设计未知质量的检测。
设一根电阻丝,电阻率为?,长度为I,截面积为S,在未受力时的电阻值为丄----- ①S如图一所示,电阻丝在拉力F作用下,长度I增加,截面S减少,电阻率T也相应变化,将引起电阻变化△ R,其值为. . :l S ,—-p ————② RIS^对于半径r为的电阻丝,截面面积S—:r2,则有:ss—2:n r。
令电阻丝的轴向应变为;- J.I,径向应变为•汀r =—巩.丄|)一;,;由材料力学可知,为电阻丝材料的泊松系数,经整理可得空—(1+2忙三R ?通常把单位应电所引起的电阻相对变化称为电阻丝的灵敏系数,其表达式为AP P/从④可以明显看出,电阻丝灵敏系数K由两部分组成:受力后由材料的几何尺受力引起(1 ^1);由材料电阻率变化引起的(,1耳;_1。
对于金属丝材料,(;_1项的值比(1,2丄)小很多,可以忽略,故K = 1 。
大量实验证明在电阻丝拉伸比例极限内,电阻的相对变化与应变成正比,即为常数通常金属丝的—1.7〜3.6。
④可写成2.3弹性元件的选择及设计本次设计对质量的检测是通过对压力的检测实现的,所以弹性元件承受物重也即压力,这就要求弹性元件具有较好的韧性、强度及抗疲劳性,通过查设计手册,决定选取合金结构钢30CrMnSiNi2A,其抗拉应力是1700Mpa屈服强度是1000Mpa弹性模量是211Gpa 同时本次设计选取弹性元件的形式为等截面梁,其示意图如图二所示图二等截面梁作用力F与某一位置处的应变关系可按下式计算:;=薯 式中: : 距自由端为|0处的应变值;I ――梁的长度;E ――梁的材料弹性模量; b ――梁的宽度; h――梁的厚度通过设计,选取 I =20mm, I o =14mm,b=1Omm,h=3mm6 100 14 10-3 可黑 Mpa=93.3Mpa<< 1000Mpa 10 10 9 10因此,选取是合理的2.4应变片的选择及设计从理论学习中知道,箔式应变片具有敏感栅薄而宽,粘贴性能好,传递应变 性能好;散热性好,敏感栅弯头横向效应可以忽略;蠕变,机械滞后小,疲劳寿 命长等优点,所以非常适合本次设计的应用。
选择4片箔式应变片(BX120-02AA 阻值为120Q,其基底尺寸是2.4 2.4 (mmmm )。
同时敏感珊的材料选择铂 因为其灵敏系数达K s =4.6,且其最高工作温度可以达 800多摄氏度,栅长做到 0.5mm应变片粘贴在距自由端|0处,R1和R4粘贴在梁的上方承受正应变,R2和 R3则与之对应粘贴在下方承受负应变。
粘贴剂选择环氧树脂粘贴剂。
基底材料选择胶基,厚度为 0.03mm-0.05mm引线材料采用直径为0.15-0.18mm 的铬镍金属丝引线。
最后在安装后的应变片和引线上涂上中性凡士林油做防护作用, 以保证应变片工作性能稳定可靠。
这样最大应变为:3=竺=—69100 14310― =4.4 10^<15 10(课设条件要求)Ebh 2 211 109 10 10-3 9 106FI 0现校核如下:C=2bh因此是符合的。
且交流电桥的最大输出输入比为:三、单元电路的设计3.1电桥电路的设计为了实现对应变片的温度补偿,因此选择全桥电路作为测量电路,将4片应 变片接入电桥。
桥路图如图三所示。
其次,考虑到连线导线分布电容的影响及交 流电桥的初始平衡性问题(无称重时电桥输出应为零),应在桥路中采取调零电 路。
桥路接法如图三所示,R5和C2即是实现调零用的,取C2=1uF R5=1.8k Q 0 电桥输出为U °=U i K s;=5 —0 iR交流电源频率选择为5KHZ,现使桥路最大输出为10mV 则电压幅值为:3.2放大电路的设计由于传感器输出的电压比较小,因此需对其进行放大使之满足后续电路的处U iAR.4 10-44.6R2mVvU 。
%7Vout2out理要求。
鉴于传感器输出可能杂有共模电压,为此,选取具有高共模抑制比的 AD620作为放大器来达到净化信号电压和充分节约成本和制造的空间的目的。
电路图如图四所示其放大增益为:为了将10mV 勺电压放大到10V,需要放大1000倍,为此选择分配级为50 20 这里放大50倍,因此解得R4=1.008k Q 。
3.3移相器的设计因为电桥电路输出的电压对载波信号有一定的超前角,一般为几度到几十 度,因此在把载波信号作为相敏检波的参考电压前需对其进行一定的移相处理 图五为0-90。
的移相电路。
G =1 +49.4kQ6Ul out图四放大电路VCC500 Q Key=A电源电压U0U2图五移相电路若设R12调节后的有效电阻为R,则移相的推导为:U L±^U i1 + joRC U_二 kU 。
由 U . =U _u, U o 时 2R 2C 2+j 时 RC H j - 2 2 2"U i k (1" R C )因为,的数量级为104,所以可以取C3=100uF 这样R ( R12)可以设定在500以移相电路不改变幅值。
3.4过零比较器的设计在进行相敏检波时,我们更希望参考电压整形为方波, 这样便于比较,因此 设置一个过零比较器LM339实现这一功能。
电路图如图六所示。
tg 二1RCQ 范围,即实现相角在0-90°移动。
上式中k= 10k" 102+100」H j-1。
所图六过零比较器3.5相敏检波电路的设计由于采用的交流电压不能实现对压力方向的判别, 所以要利用相敏检波的鉴 相特性达到这一目的。
电路图如图七所示。
从图示知道,用JFET 做开关器件,当U3out >0时,其导通,U4A 正极为0 电位,信号从负极输入,放大倍数为-竺=-1,此时U1out >0;当U3out V 0时,R8JFET 截止,信号从正极输入,放大倍数为1,此时Ul out V 0。
因此,相敏检波实 现了信号的判别,只是与原信号相差一个负号。
3.6低通滤波器的设计由于经过相敏检波后的电压还混有高频载波信号,所以需将其滤掉,又因为相敏检波后输出的电压与原信号差一个负号,所以选择反相一阶有源低通滤波 器,这样就可以得到真正反映原信号的直流输出。
低通滤波器截止频率设为40HZ 。
电路图如图八所示。
U4outout(接表头显图八低通滤波电路则此环节实现的放大倍数是-更°=-20,则实现了放大倍数的另一级分配,也还R9原了原始信号的相位。
所以至此,就实现了原始信号的测量处理,即能够通过将质量为0-10kg (也 即压力为0-100N )的物体作用于弹性元件(等截面梁)并通过应变片使其电阻 发生变化进而使后续相关电路产生对应的 0-10V 的电压实现对物体的称重,也即 1kg 物体对应1V 的电压。
将低通滤波后产生的直流电压接入数显表头就可直观 地看出物体质量的大小四、误差分析误差的形成主要来源于温度误差,造成温度误差的原因主要有以下两个:1、 敏感栅电阻随温度变化引起误差2、 试件材料与应变丝材料的线膨胀系数不同,使应变丝产生附加拉长或压 缩,引起电阻变化。
这样的温度误差可以通过桥路进行补偿,如本设计中的全桥电路就很好地实现 了温度的补偿其次,电桥还具有非线性误差,由于对金属丝电阻应变片,电桥非线性误 可以忽略,所以也不影响本次设计。
最后,对于如同工频等的干扰,我们尽量通过电路的优化除去干扰, 如通过 高共模抑制比仪放以及低通滤波器进行改进。
因此,从理论上说,本次设计中的误差还是比较好地得到了控制。
五、心得体会我认为,在这学期的传感器学习和实验中, 不仅培养了独立思考、动手操作 的能力,在各种其它能力上也都有了提高。
更重要的是,在实验课上,我们学会 了很多学习若取R10=1k Q ,则由2 - R 10G=40HZ 可解得 3= 4uF ,另外取R9=50Q ,的方法。
而这是日后最实用的,真的是受益匪浅。
要面对社会的挑战, 只有不断的学习、实践,再学习、再实践。
这对于我们的将来也有很大的帮助。
以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。
就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。