Volte MOS差点分析指导书1 概述1.1 MOS指标定义MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:表1 MOS分和用户满意度一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
中国移动对MOS分的定义为路测MOS分,基于宽带AMR(AMR WB)的POLQA算法打分。
1.2 MOS评分原则中国移动集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE的MOS值测试仅针对语音业务。
针对目前移动场景,VoLTE与VoLTE通话协商的编码为AMR-WB宽带编解码,提供高清语音体验;VoLTE与2G/3G CS业务互通协商的编码为AMR-NB窄带编码(与CS域的编解码相同),因此MOS测试采用VoLTE拨打VoLTE 的方式,测试宽带VoLTE编码的语音质量。
集团对MOS分的定义为路测MOS分,采用P.863算法进行评估。
集团对MOS测试工具要求:珠海世纪鼎利Pioneer、北京惠捷朗(CDS),现阶段测试终端是HTC M8T。
目前的MOS评分周期是9秒输出一个MOS分,主叫和被叫周期交替发送固定语料。
每隔9秒鼎利设备的主叫和被叫会输出一个MOS分,发送端发送语料的时候,接收端静默接收,不存在主被叫同时发送语料的情况,无论是主叫发语料还是被叫发语料,对端接收后都会在MOS盒和原始语料进行对比,所以主叫和被叫的MOS是一致的。
每个MOS语料发送周期内(9秒),连续的语音分为两段,每段时间2秒左右,总的发音时长4秒左右。
其余时间都是发送静默帧(SID)。
160ms发包周期的都是SID帧,20MS发包周期的都是有语音的RTP包。
1.3 MOS考核要求MOS平均分,即POLQA算法平均得分,目标值:3.5,挑战目标:4.0;MOS>3.0占比,即MOS得分>3.0的采样点占比,目标值:85%,挑战目标:90%;MOS>3.5占比,即MOS得分>3.5的采样点占比,目标值:80%,挑战目标:85%。
2 影响MOS的主要因素影响Volte MOS值的因素主要有语音编码、端到端时延、抖动、丢包率等,如下:下行失步后重建下行失步主要原因为无线环境不好,干扰,弱覆盖等,在协议里面针对上行链路失步和下行链路失步分别定义了判断标准,上行链路失步会删除链路,立即断开,造成UE最终掉话,如在切换时目标小区上行失步会导致切换失败引起掉话;下行失步会进行cellupdate,如果cu成功,业务可以恢复,这种小区更新的原因是下行失步,目的是一直挽救机制,但在失步时语音业务会受到影响,MOS评分变低甚至掉话,UE从RRC 连接态突然进入空闲态,并且发起RRC重建,导致连续丢包小区重建小区内RRC和激活用户数过多,导致QCI1无法及时调度,PDCP丢弃定时器超时后丢包,SRI调度不及时导致丢包等。
频繁切换系统内切换过程对MOS有影响,系统内切换对MOS值不一定影响非常大,RSRP较好地方切换MOS值下降0.1-0.5,而乒乓切换影响较大,MOS值下降0.5-1.5分,路测工具每10S采集一次MOS值(10S平均值),如果采集到切换过程的MOS,测试结果就会偏低,咋分析路测数据是,需要关注低MOS区域是否有切换或者乒乓切换发生,导致RTP短时间内连续丢包抖动传输抖动传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延空口抖动语音抖动是网络时延和网络抖动造成的。
网络时延是指一个IP包在网络上传输所需的平均时间,网络抖动是指IP包传输时间的长短变化。
当网络上的语音时延(加上声音采样、数字化和压缩时延)超过200 ms时,通话双方一般就倾向于采用半双工的通话方式,一方说完后另一方再说。
另一方面,如果网络抖动较为严重,那么有的语音包因迟到被丢弃,会产生话音的断续及部分失真,严重影响音质。
,空口抖动容易出现在大话务场景下,因为调度因素出现空口抖动,还包括空口质量问题导致MAC重传引入的抖动。
2.1 语音编码以ASCOM工具为例,应用POLQA SWB 评估方法,采用某语音样本和AMR WB 23.85kbps语音编码,MOS值最好为4.14;采用同样的语音样本和AMR NB 12.2kbps语音编码,MOS值最好为3.1。
2.2 端到端时延终端的语音编解码时延指的是终端从话筒采集语音到编码成AMR-NB 或AMR-WB 等码流;或者从AMR-NB 或AMR-WB 码流解码成语音并从听筒播放的处理时延空口的传输时延eNodeB的调度等待时延、空口误包吃重传以及分段均会影响空口的传输时延。
核心网的处理时延包括对语音包的转发时延,以及可能存在的语音编解码转换时延(譬如LTE终端拨打固定电话,两边终端的语音编解码方式不同,需要经过核心网媒体网关的编解码转换)。
传输网传输时延 语音IP 报文在传输网设备和链路上的传输时延2.3 丢包和抖动空口信号质量 空口信号质量差可能导致误包增加,过多的重传和分段会造成丢包和抖动增加。
eNodeB 的负载 当eNodeB 上负载较重时,包括CPU 占用率偏高或者高优先级业务的PRB 占用率偏高,可能导致部分用户的语音包不能及时调度,从而造成超时丢包或者抖动增加。
传输网络丢包或者抖动 传输网络上丢包或者存在抖动,会造成端到端丢包率上升和抖动增加。
4.154.083.843.73.022.512.041.522.533.544.50%0.10%0.50%1%3%5%10%丢包率VS MOS3 MOS优化思路如上所述,影响MOS的因素涉及端到端,具体可以归纳为两通道、三网元,需要拉通端到端进行分析优化,如下:6.CS-Retry呼叫流程MOS优化思路就是采用正确的测试方法,选用最合适的编码,配置合理的参数,同时降低丢包、误码对语音的影响。
由于丢包、时延和抖动是影响VoLTE语音质量的直接因素,反映到无线侧主要就是覆盖、资源、干扰、切换等,因此无线空口网络质量优化是MOS提升的关键。
3.1 测试方法寻优通过前期的经验总结发现,MOS语料和MOS设备音量调整,MOS测试设备供电方式、音频线的连接是否稳定等因素都会影响MOS分;移动集团规范了MOS语料,所以只能选择移动推荐的固定语料,手机音量和MOS测试设备供电方式都可以参考MOS测试知道书进行寻优。
3.2 配置参数寻优Volte配置参数包含两类,一类是开通Volte功能的基础类参数,包含Volte开关、DRX参数、RoHC参数、互操作参数等;一类是影响MOS的性能类参数,包含时延调度、上行RLC 分段等特性类参数。
对于基础类参数,需要加强基础功能开关、特性参数、系统内邻区、异频切换参数、互操作参数的核查,避免由于基础功能开关、特性参数配置错误或者系统内邻区漏配、异频参数设置不合理或者eSRVCC过多导致MOS差。
对于性能类参数,结合中国移动Volte性能基线参数的推荐设置,推广使用,后期在参数修改范围内进行精细优化,确保参数统一合理。
MML Object Parameter ID 参数名称CELLULSCHALGO ULVOIPRLCMAXSEGNUM VOIP上行最大RLC分段数INTERRATHOGERANGROUP INTERRATHOGERANB1THD 基于覆盖的GERAN触发门限CELLALGOSWITCH SUBFRAMESCHDIFFSWITCH@DLSCHSWITCH子帧调度差异化开关@ 下行调度开关CELLALGOSWITCH PUSCHDTXSCHOPTSWITCH@ULSCHSWITCH PUSCH DTX调度优化开关CELLULSCHALGO ULRBALLOCATIONSTRATEGY 上行资源分配策略CELLSTANDARDQCI TRAFFICRELDELAY 业务延迟释放时间CELLULSCHALGO ULDELAYSCHSTRATEGY 上行时延调度策略CELLULSCHALGO ULVOIPDELAYSCHSWITCH@ULENHENCEDVOIPSCHSW上行VOIP时延调度开关CELLULSCHALGO ULVOIPSCHOPTSWITCH@ULENHENCEDVOIPSCHSW上行VOIP调度优化开关CELLULSCHALGO ULVOLTEDATASIZEESTSWITCH@ULENHENCEDVOIPSCHSW上行VoLTE动态调度数据估算开关PUCCHCFG FORMAT1CHALLOCMODE Fomat1码道分配模式CELLALGOSWITCH INTERFRANDSWITCH 干扰随机化算法开关3.3 提升策略寻优通过过滤MOS低于3.0/3.5的问题点,MOS打分由低到高进行问题点分类统计,找到MOS差的主要影响因素和共性问题,优先制定相应方案进行提升;通过日常对MOS的提升优化,记录统计问题点发生频次、现象,总结出完善的MOS 优化流程,为后续的MOS优化提升提供指导。
4 MOS差点分析指导4.1 MOS差点分析思路MOS低分是E2E问题,分析MOS低分需要关联主叫和被叫同时进行对比分析。
但是有切入重点,例如主叫发语料包,被叫收语料包。
那么优先看被叫下行的空口,如果被叫下行没问题再看主叫的上行。
MOS低于3.0分容易定位,MOS优化初期建议从3.0以下差点入手。
重点分析和解决连续MOS差点(连续MOS差点≥2).例如在GSM呼叫、下行弱覆盖、邻区漏配、上行高干扰、基站状态异常等问题都可能造成连续MOS差点。
因为MOS样本只有10秒左右,离散的MOS差点通常是突发上下行干扰或者切换导致,分析优化难度高,如果不是连续空口质差或者RRC重建问题等明显问题,建议降低处理的优先级。
4.2 MOS分析优化流程1)导出每10秒打点的MOS 分,包含MOS分、平均时延、Jitter指标。
筛选出MOS低于3.0/3.5的差点;2)导出主叫和被叫到收/发RTP包序号,对RTP包序号进行顺序插补,通过函数计算累计丢包数量;3)分析MOS差点是主叫发送还是被叫发送,优先看接收端下行是否存在丢包,记录RTP丢包数量、在MOS样本点内的RTP丢包率;4)如果有RTP丢包,分析丢包时间点接受端到下行空口质量(RSRP、SINR、DL-MAC-BLER)以及是否有切换。
分析时需要打开上述空口测量量的妙级统计。
定位该小区下行质差或者重建的原因;5)如果接收端下行空口质量好,而且DL-MAC-BLER,转发送端上行分析,分析上行时重点关注RSRP、SINR、PL、UE-TxPower、UL-MAC-BLER。