4燃烧的化学和物理基础
氧原子和双原子氧分子的生成焓随温度的变化
22
第4章 燃烧的化学和物理基础
1.3.3 燃烧焓和热值
化学反应过程中,系统在反应前后其化学组分发 生变化,同时伴随着系统内能量分配的变化。后者表 现为反应后生成物所含能量总和与反应物所含能量总 和间的差异。此能量差值以热的形式向环境散发或从 环境吸收,称反应焓(反应热)。 对燃烧过程,就称 为燃烧焓,即
(h
0 f ,O2 298
)
0
21
第4章 燃烧的化学和物理基础
在298.15K,氧分子的生 成焓为0,即 hO2 0 在298.15K,氧原子的绝对 焓等于生成焓(标态)
氧原子 绝对焓 (kJ/kmol)
氧分子
在4000K,氧原子的绝对焓 (4000K时)等于生成焓 (标态)+显焓,即 hO (4000) (h f0,O ) 298 hs ,O (4000)
26
第4章 燃烧的化学和物理基础
一般地,燃烧室的温度要低于理论绝热燃烧温度。
27
第4章 燃烧的化学和物理基础
绝热燃烧温度有两种定义: 一是定压燃烧下的(适用于燃气轮机或锅炉) 一是定容燃烧下的(适用于理想奥托循环) 一个稳态的燃烧过程的绝热燃烧温度Tmax可以用 Hprod = Hreact 来进行计算,即
例如:碳氢化合物在空气中燃烧的理想产物是 CO2,H2O,O2,和 N2。但如果离解就会产生以 下物质:H2,OH,CO,H,O,N,NO, 还可 能有其他的许多。 如何计算平衡组分?
29
第4章 燃烧的化学和物理基础
化学平衡的概念来自热力学第二定律。 热力学第二定律的定义:
① 不可能把热从低温物体传到高温物体而不产生其他影响 (1850 年,德国物理学家克劳修斯); ② 不可能从单一热源取热使之完全转换为有用的功而不产生 其他影响(1851 年,英国物理学家开尔文) ; ③ 克劳修斯提出了熵的概念,热力学第二定律又可以表述为: 在孤立系统中,实际发生的过程总使整个系统的熵值增大, 此即熵增原理。
取积分得
理想气体的热方程
u (T ) T u ref cv dT u (T ) u ref cv dT Tref h(T ) T href c p dT h(T ) h c dT Tref
Tref
T
5
T
cv 第4章 燃烧的化学和物理基础
比热容 cv 和 c p 是温度的函数,而温度与系统 的内能有关。
第4章 燃烧的化学和物理基础
第4 章
4.1 4.2 4.3 4.4 4.5 4.6
燃烧的化学和物理基础
热力学性质关系式回顾 热力学第一定律 反应物和生成物的混合物 绝热燃烧温度 化学平衡 化学动力学
1
第4章 燃烧的化学和物理基础
1.1 热力学性质关系式回顾
强度量:以单位质量(或物质的量)来表示,通常 用小写字母来表示,如比容为v(m3/kg),比内能 为u(J/kg),比焓为h(J/kg)(=u + Pv)等; 广延量:取决于物质的数量(质量或物质的量), 通常用大写字母来表示,如体积为V(m3),内能 为U(J),焓为H(J)(=U + PV)等。 所以 V=mv;U=mu;H=mh
14
第4章 燃烧的化学和物理基础
( A / F ) stoic ( F / A) 当量比 ( F / A) stoic (A/ F)
即实际燃空比与理论燃空比的比值; 常用来定量地表示燃料-氧化剂混合物是富、贫或 化学当量的。
>1,富(浓)燃料混合物燃烧
<1,贫(稀)燃料混合物燃烧
hR qcv hprod hreac
以外延量表示为
H R H prod H reac
23
第4章 燃烧的化学和物理基础
显然,若H R 为负,即生成物所含能量小于反应 物所含能量,表明有多余的能量释放,称为放热 反应,相反,此差值为正即要向系统加入能量, 为吸热反应。
如
C O2 CO2
反应焓为-393.5 kJ/mol,此反应为放热反应; 而
C H 2O CO H 2
反应焓为130.14 kJ/mol,则为吸热反应。
24
第4章 燃烧的化学和物理基础
燃料的热值(heating value) :定义为燃料在稳 态的条件下完全燃烧时产物的状态返回到反应物 的状态所放出的热量。燃料的热值等于燃料燃烧 焓的绝对值 。 即 Heating value = hc (kJ/kg 燃料)
C x H y a(O2 3.76 N 2 ) xCO2 ( y / 2) H 2O 3.76aN 2
式中:a x y / 4 , 而3.76为空气中氮气与氧气的体积比,即79%:21%
mair 4.76a MWair 化学当量空燃比 ( A / F ) stoic m 1 MW fuel fuel stoic
燃料空气混合器 燃气轮机燃烧筒,该机共8个
16
第4章 燃烧的化学和物理基础
已知: =0.286,MWair=28.85,mair=15.9 kg/s, MWfuel=1.16×12+4.32×1 =18.24 求: mfuel and (A/F)
第4章 燃烧的化学和物理基础
4.2、在一个大气压下,对内燃机排气歧管内的废气进行采样后 分析得到如下废气成分的摩尔分数:
cp 分子的内能由三部分组成:平动、振动和转动。
平动 转动
平动
振动
(a)只含有平动(动能) (b)含有振动(势能和动能) 的单原子组分的内能 和转动(动能)及平动动能 6 的双原子组分的内能
第4章 燃烧的化学和物理基础
一般地,分子结构越复杂,其摩尔热容就化学和物理基础
2
第4章 燃烧的化学和物理基础
状态方程:用来表示一种物质的压力P、温度T和体 积V(比容积v)之间的关系。对于理想气体,即忽 略分子间的作用力和分子体积的气体,状态方程等 效为以下几种形式:
kg K
pv RgT pV nRT p0V0 RT0
1kg n mol 1mol标准状态
pV mRgT
理想气体混合物 组分 i的摩尔分数,xi
Ni Ni xi N1 N 2 N i N tot
组分 i的质量分数,Yi
mi mi Yi 1 x m1 m2 mi i mtot
i i
根据定义
x
i
i
1
y
i
1
8
第4章 燃烧的化学和物理基础
摩尔分数和 质量分数之 间的换算:
11
第4章 燃烧的化学和物理基础
1.2 热力学第一定律
热力学第一定律表达的最基本的原理是能量守恒。 对闭口系统(质量一定的系统),
Q = E + W
Q=热 E = 系统内能的变化 W=功
它表明向系统输入的热量Q,等于 系统内能的增量ΔE 和系统对外界作 功W之和。
12
第4章 燃烧的化学和物理基础
H reac (Ti , P) H prod (T max, P)
即反应物在初态(T=298K,P=1atm)的绝对焓 等于产物在终态( T=Tmax,P=1atm )的绝对焓 Tmax 定义明确,简单,但计算要求知道燃烧产物 的组成。
28
第4章 燃烧的化学和物理基础
1.5 化学平衡
在高温燃烧过程中,燃烧产物不是简单的理想产 物的混合物。 主要成分离解,产生次要成分。
当产物中的水是液相时的热值为高热值; 当产物中的水是气相时的热值为低热值。
它们的关系为
HHV = LHV + hfg
(kJ / kmol fuel)
式中, hfg是产物中H2O的摩尔数是在 25oC下水的 汽化潜热。
25
第4章 燃烧的化学和物理基础
1.4 绝热燃烧温度
在实际的燃烧装置中,反应焓亦即燃烧热被生成物吸 收而使燃烧产物温度升高。 如果所有反应焓全被吸收就一定是在绝热条件下才可 能,此时所能达到的燃烧温度为最高燃烧温度,或称 绝热燃烧温度。
Pa m3
气体常数,单位为J/(kg· K)
R=MW*Rg=8.314 5 J/(mol· K)
3
第4章 燃烧的化学和物理基础
状态的热方程:表示内能(或焓)与压力和温度关 系的方程,即 u=u(T,v) h=h(T,P)
取微分
du= ( u )v dT ( u )T dv
T v dh= ( h ) P dT ( h )T dP T P
混合物焓的计算:
hmix Yi hi
i
h mix xi hi
i
hi
摩尔焓
smix (T , P) Yi si (T , Pi )
混合物熵的计算:
i
s mix (T , P) xi s i (T , Pi )
i
10
第4章 燃烧的化学和物理基础
在许多燃烧过程中,涉及液体-蒸汽之间的相变。 汽化潜热hfg:在给定温度下单位质量的液体在定 压过程中完全蒸发所需要的热量(又叫蒸发焓)。
Yi xi MWi / MWmix xi Yi MWmix / MWi
MWmix xi MWi
i
混合物的摩尔质量MWmix
MWmix
对于理想气体,混合物的分压为所有物质分压之和 i
P i Pi Pi xi P
1 (Yi / MWi )
P Pi
i
9
第4章 燃烧的化学和物理基础
对开口系统(控制体),
它表明向系统输入的热量Q,等于质量为 m的流体流经 系统前后焓H 的增量、动能的增量以及系统向外界输出 的机械功W之和。