当前位置:
文档之家› 浙大版_普通化学第六版知识点归纳【通用】.ppt
浙大版_普通化学第六版知识点归纳【通用】.ppt
(4)多重平衡规则: Kθ= Kθ1. Kθ2 3.化学反应等温方程式:
(1) ΔrGm(T) = -RTlnK(T)
(2)ΔrGm (T)= RT lnJc/K
ΔrGm (T) = RT lnJp /K
(3) ln Kθ(T)=-ΔrHθm / RT +ΔrSθm / R
= ( ) ln K2θ
K1θ
➢ n=1,2,3,4,5,6等正整数,电子层分别用K,L,M,N,O,P表示, 称 为电子层的符号。
➢在氢原子中n值越大的电子层,电子的能量越高。但在多电 子原子中,核外电子的能量则由主量子数n和角量子数l两者决 定。
最新.课件
16
2.角量子数 l
角量子数 l 可表示原子轨道或电子云的形状。
l= 0, 1, 2, 3, …, (n-1) ➢ l=0时(s轨道),原子轨道或电子云呈球形分布; ➢ l=1时(p轨道),原子轨道的角度分布图为双球面,电子云 的角度分布的图为两个交于原点的橄榄形曲面; ➢ l=2(d轨道)及3(称f轨道)时,原子轨道的形状更为复杂。 ➢ 角量子数就表示同一电子层n的不同“电子亚层”。 ➢ n, l相同的各原子轨道属于同一 “电子亚层”,简称“亚 层”。
(2)生成沉淀(配离子)影响:氧化型形成沉淀 ,E↓;还原型形成沉淀 ,
E↑; 氧化型和还原型都形成沉淀,看二者Ks 的相对大小。
最新.课件
6
4. 电动势E与△G的关系
-DrG =Welec,max
DrGm= --zFE 或 DrGmθ = --zFE θ
5.电极电势的应用
(1)氧化剂和还原剂相对强弱的比较 E(O/R) O氧化能力 R还原能力
a O + z e - = b R (R=8.315 J ·K -1 ·mol-1 ;F = 96,485 C ·mol-1 ;T=298.15K)
E(电极) = E (电极)+0.0592V lg {c(O)/c}a
z
{c(R)/c}b
(1)pH影响:氧化物(MnO2、PbO2)、含氧酸及其盐(KMnO4、 KClO3)pH减小(酸度增大),电极电势增加,氧化能力增强。
6. 化学电源: 掌握铅蓄电池电极反应及充放电原理
7. 电解(△G>0):
(1)电解池与原电池的区别: 组成,原理,电极反应 (2)分解电压,反电动势,超电势 (3)极化:浓差;电化学. 结果: E(阳)增大, E(阴)减小
8. 电镀,电抛光,电解加工,阳极氧化
9. 金属腐蚀与防护:
(1)化学腐蚀
4.分子间力和氢键
(1)共价键极性与分子极性(电偶极矩p与分子构型)
(2) 色散力,诱导力,取向力
(3)氢键:特征;存在条件;对物性影响
分子间的氢键存在使熔、沸点升高
分子内的氢键存最在新.课使件熔、沸点降低
21
键与键的对比表
共价键类型
键
原子轨道重叠方式 头碰头
键
肩并肩
波函数分布 电子云分布形状
对键轴呈圆柱形对 称
能量转换(热效应)
化反
能否发生(反应方向)
学 热
应 的 可
化 学
反应限度(化学平衡)
力能 学性
反 应
反应速率
化反
现 实 性
最新.课件
1
环
体系
境
第一章 基本框架
物质交换 能量交换
敞开体系 封闭体系 孤立体系
性质
深度.广度
状态
物理.化学
热力学第一定律 ∆U = Q − W
热力学第二定律 封闭体系:∆G <0, 自发过程 孤立体系: ∆S >0, 自发过程
ⅠB ⅡB
(n-1)d10ns1--2
镧系 锕系(n-2)f1--14(n-1)d0-2ns2
最新.课件
20
第六章 化学键与分子结构
1.离子键:本质,特征
2.价键理论
理论要点,共价键本质特征, 键和键,键参数
3.杂化轨道理论与分子构型
理论要点; sp, sp2,sp3,不等性sp3杂化:分子构型及书上实例
最新.课件
9
应用 :1 计算电对的标准电极电势
E=
z1E + z2 E + z3 E z
例1
EB/V BrO-3
? z1
BrO-
0.61 z
? z2
Br2
1.605 z3
Br-
0.76
z4
E
(BrO-/Br2)=
z4E
(BrO-/Br-)
z2
-z3 E
(Br2/Br-)
=
(2×0.76-1×1.605)V 1
波函数 = 薛定锷方程的合理解 = 原子轨道
概念意义;s,p轨道角度分布图(形状特点及描述)
5.电子云 y2与波函数y:
概念意义; s,p电子云角度分布图(形状特点及描述)
电子云与原子轨道角度最分新.布课件图区别
14
6.四个量子数 n, l, m, ms:取值,意义
7. 核外电子排布:
(1)三原则:泡利不相容;能量最低;洪特规则 (2)电子进入能级顺序及电子分布式:重点4,5周期
-ΔGT,P=(W有用) 最大
热力学第三定律 T=0 K, 纯物质完整晶态,最新混.课件乱度最小,S= 0
过程函数
状态函数
2
概念:
1.热力学标准态;状态函数;内能U; 热Q; 功W 2.热效应;焓(变) (H, △H, △rHθ, △rHθm, △fHθm) 3.吉布斯自由能(G, △G, △rGθ, △rGθm, △fGθm) 4.熵(Sθm, △rSθm )
最新.课件
17
3. 磁量子数 m
m = 0,±1,±2,……±l。 决定了原子轨道(或电子云)在空间的伸展方向。 l=0,m=0,亚层只有一个球形的s轨道,无方向性。 l=1,m=0﹑±1,p亚层有三个不同伸展方向的p轨道,常用pz, px,py表示这三个不同伸展方向。 l=2,m=0﹑±1﹑±2,d亚层有5个不同伸展方向的d轨道。 当n, l, m 都确定,就决定了是哪一个主层、什么形状的亚层、 某个伸展方向的轨道。
ΔrHθm
T2 – T1
R最新.课件T2 ×T1
4
4.一元弱酸弱碱的电离平衡: c (H+)= { Ka. c(HA) }1/2
c(HAc)/ Ka ≥400 c(NH3·H2O)/ Kb ≥400
c(OH-) ≈ { Kb. c(B) }1/2
5.缓冲溶液:(1)定义;组成;缓冲原理(加酸,加碱,稀释)
(2)电化学腐蚀
析氢腐蚀; 吸氧腐蚀;氧浓差腐蚀(水线腐蚀)
(3)了解防护方法
最新.课件
8
应用 :1 计算电对的标准电极电势
A
E1 z1
B
E2 z2
C
E3 z3
D
E z
z E = z1E + z2 E + z3 E
E=
z1E + z2 E + z3 E z
z、z1、z2、z3
分别为各电对中氧化型
与还原型的氧化数之差
3.
ΔrGm(298.15K)=
∑
v
B
Δf
G
m
(B,298.15K)
4. ΔrS m (298.15K)=∑ v B S m 最 新(B.课,件298.15K)
3
第三章 基本知识点及要求
1.道尔顿分压定律: pi = p总 xi 2.平衡常数: (1)气相反应: Kp, Kθ (注意单位)
(2)溶液反应: αB, Kc, Kθ (3)意义及书写注意事项
(2)氧化还原方向的判断 电动势E > 0, DrGm< 0, 正向自发
(3)氧化还原反应进行的次序 反应首先发生在电极电势差值较大的两个电对之间
(4)氧化还原反应进行程度的衡量
lnKθ = zFEθ/RT
lgKθ = zEθ/0.0592V
(5)电极电势的相对大小不能判断反应速率的大小
最新.课件
7
c(弱酸)
(2) c(H+) ≈ Ka c(弱酸盐)
c(弱酸) pH ≈ pKa- lg c(弱酸盐)
c(OH-) ≈ Kb c(弱碱) c(弱碱盐)
c(弱碱) pH ≈ 14-pKb+ lg c(弱碱盐)
6.沉淀-溶解平衡:(1)溶度积 Ks 及与溶解度关系 (2)溶度积规则:比较离子积与Ks
7. 配离子的离解平衡:
当一种元素处于中间氧化数时,它一部分向高的
氧化数状态变化(被氧化),另一部分向低的氧化
数状态变化(被还原),这类反应称为歧化反应
最新.课件
11
应用 :3 解释元素的氧化还原特性
如 EA/V
Fe3+ 0.771 Fe2+ -0.44 Fe
E (O2/H2O)=1.229V >E (Fe3+/Fe2+)
Fe2+在空气中不稳定,
易被空气中氧氧化为Fe3+ 。
4Fe2+ + O2 + 4H+ → 4Fe3+ + 2H2O
最新.课件
12
应用 :3 解释元素的氧化还原特性
如 EA/V
Fe3+ 0.771 Fe2+ -0.44 Fe
故Fe2+不会发生歧化反应 可发生歧化反应的逆反应
Fe + 2Fe3+ → 3Fe2+
Electron spin visualized
ms的取值只有+1/2和-1/2,不依赖于n,l,m三个量子数
它描述了电子自旋运动的特征。