当前位置:文档之家› 简单低通滤波器设计及matlab仿真

简单低通滤波器设计及matlab仿真

东北大学研究生考试试卷考试科目:课程编号:阅卷人:考试日期:姓名:xl学号:注意事项1.考前研究生将上述项目填写清楚.2.字迹要清楚,保持卷面清洁.3.交卷时请将本试卷和题签一起上交.4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室.东北大学研究生院培养办公室数字滤波器设计技术指标:通带最大衰减: =3dB ,通带边界频率: =100Hz阻带最小衰减: =20dB 阻带边界频率: =200Hz采样频率:Fs=200Hz 目标:1、根据性能指标设计一个巴特沃斯低通模拟滤波器。

2、通过双线性变换将该模拟滤波器转变为数字滤波器。

原理:一、模拟滤波器设计每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。

为了使设计规范化,需要将滤波器的频率参数作归一化处理。

设所给的实际频率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1=p λ,ps s ΩΩ=/λ。

令归一化复数变量为p ,λj p =,则pp s j j p Ω=ΩΩ==//λ。

所以巴特沃思模拟低通滤波器的设计可按以下三个步骤来进行。

(1)将实际频率Ω规一化 (2)求Ωc 和N11010/2-=P C αsp s N λααlg 110110lg10/10/--=这样Ωc 和N 可求。

p x fp s x s f根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时Np Nj G 222)/(1111)(ΩΩ+=+=λλ(3)确定)(s G因为λj p =,根据上面公式有N N N p j p p G p G 22)1(11)/(11)()(-+=+=-由0)1(12=-+NN p 解得 )2212exp(πN N k jp k -+=,k =1,2, (2)这样可得1)212cos(21))((1)(21+-+-=--=-+πN N k p p p p p p p G k N k k求得)(p G 后,用ps Ω/代替变量p ,即得实际需要得)(s G 。

二、双线性变换法双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。

为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现:)21tan(21T T Ω=Ω这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。

将这个关系延拓到整个s 平面和1s 平面,则可以得到T s T s e e T T s T s ⋅-⋅-+-=⋅=11112)21tan(2再将1s 平面通过标准变换关系映射到z 平面,即令)*1exp(T s z =得到11112--+-=z z T s同样对z 求解,得到s T s T z -+=22这样的变换叫做双线性变换。

为了验证这种映射具有s 平面的虚轴映射到z 平面单位圆上的特性,考虑 Ω=j s ,ωj e z =,得ωωj j e e T j --+-=Ω112ω21tan 2T =Ω除了使s 平面的虚轴映射到单位圆上之外,s 平面的左半部分映射到单位圆的内部,s 平面的右半部分映射到单位圆的外部。

设计过程一、计算滤波器阶数N 和截止频率Ωc 。

根据公式:代入数据,计算可得:λps =0.5K ps =0.99885 N=3.3151所以取N=4,即滤波器为四阶滤波器。

计算3dB 截止频率,根据公式计算可得 Ωc =112.6096二、计算系统函数已知四阶归一化低通巴特沃斯模拟滤波器系统函数为:()16131.24142.36131.21234++++=s s s s s H a将S 用S/Ωc 替代,求出系统函数: H a (s) = b/ (s 4+a 3s 3+ a 2s 2+ a 1s+ a 0) 其中:b=2.5063*10^(11) a 3=1.8489*10^(5) a 2=1.7092*10^(6) a 1=9.2560*10^(8) a 0=2.5063*10^(11)三、程序实现模拟滤波器(MATLAB ) clear; close allfp=100;fs=200;Rp=3;As=20; %滤波器指标[N,fc]=buttord(fp,fs,Rp,As,'s') %计算阶数N 和3dB 截至频率fc [B,A]=butter(N,fc,'s'); %设计低通巴特沃斯模拟滤波器[hf,f]=freqs(B,A); %计算模拟滤波器频率响应plot(f,20*log10(abs(hf)), 'r')grid; xlabel('频率Hz');ylabel('幅度dB')title('模拟低通滤波器');axis([0,250,-25,5])line([0,250],[-3,-3]);line([100,100],[-25,5]);line([0,250],[-20,-20]);line([200,200],[-25,5]);响应曲线如下四、通过双线性法变换将模拟滤波器转变为数字滤波器 首先根据公式将 H (s)转换为H(z)。

计算可得:H(z)分子系数为:Mz = 0.0197 0.0786 0.1179 0.0786 0.0197 H(z)分母系数为:Nz = 1.0000 -1.7271 0.0871 1.8682 -0.9138五、程序实现数字滤波器(MATLAB ) T=0.005;M=2.5063*10^(11);N=[1,1.8489*10^(5) ,1.7092*10^(6) ,9.2560*10^(8) ,2.5063*10^(11)] [Mz,Nz]=bilinear(M,N,1/T); %对模拟滤波器双线性变换 Mz,Nz[h1,w1]=freqz(Mz,Nz); %数字滤波器的幅频响应 figureplot(w1/pi,20*log10(abs(h1)), 'r'); grid;xlabel('ω/π');ylabel('幅度(dB)'); title('数字低通滤波器'); axis([0,1.1,-160,20]) 响应曲线如下1-1.7271 Z -1+0.0871 Z -2+1.8682 Z -3-0.9138 Z -40.0197+0.0786 Z -1+0.1179 Z -2+0.0786 Z -3+0.0197 Z -4 H(z) =11112)()(--+-==z z T s s H z H六、设计级联型滤波器 根据编写matlab 程序求级联型滤波器系数。

程序如下:a=[0.0197,0.0786,0.1179,0.0786,0.0197]; b=[1.0000,-1.7271,0.0871,1.8682,-0.9138];[sos,g]=tf2sos(a, b) %求级联型结构系数 结果如下:sos = 1.0000 2.3550 1.4405 1.0000 0.3905 -0.60251-1.7271 Z -1+0.0871 Z -2+1.8682 Z -3-0.9138 Z -40.0197+0.0786 Z -1+0.1179 Z -2+0.0786 Z -3+0.0197 Z -4 H(z) =1.0000 1.6348 0.6942 1.0000 -2.1176 1.5166 g = 0.0197所以可由级联型结构系数写出系统函数:级联型结构图如下图所示:结果分析1、模拟滤波器性能分析观察响应曲线,在通带边界频率100Hz 处,幅度最大衰减为3 dB ;在阻带边界频率200Hz 处,幅度衰减达到20dB 。

因此模拟滤波器设计符合要求。

2、双线性变换所得数字低通滤波器分析双线性变换优点:是频率坐标变换是线性的,即T Ω=ω,如果不考虑频率混叠现象,用这种方法设计的数字滤波器会很好的重现原模拟滤波器的频率特性。

另一个优点是数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,时域逼近性好。

双线性变换法的缺点:数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变。

例如,一个模拟微分器,它的幅度与频率是线性关系,但通过双线性变换后,就不可能得到数字微分器。

1+0.3905 Z -1-0.6025 Z -21+1.6348 Z -1+0.6942Z -21+2.355Z -1+1.4405Z -2 1-2.1176 Z -1+1.5166 Z -2Y(n)H(z) = 0.0197( )( )另外,一个线性相位的模拟滤波器经双线性变换后,滤波器就不再有线性相位特性。

虽然双线性变换有这样的缺点,但它目前仍是使用得最普遍、最有成效的一种设计工具。

这是因为大多数滤波器都具有分段常数的频响特性,如低通、高通、带通和带阻等,它们在通带内要求逼近一个衰减为零的常数特性,在阻带部分要求逼近一个衰减为∞的常数特性,这种特性的滤波器通过双线性变换后,虽然频率发生了非线性变化,但其幅频特性仍保持分段常数的特性。

双线性变换比脉冲响应法的设计计算更直接和简单。

由于s与z之间的简单代数关系,所以从模拟传递函数可直接通过代数置换得到数字滤波器的传递函数。

置换过程:频响:这些都比脉冲响应不变法的部分分式分解便捷得多。

相关主题