当前位置:文档之家› 基于-单片机的烘箱温度控制器设计

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计目录1.项目概述 (1)1.1.该设计的目的及意义 (1)1.2.该设计的技术指标 (2)2.系统设计 (3)2.1.设计思想 (3)2.2.方案可行性分析 (4)2.3.总体方案 (5)3.硬件设计 (6)3.1.硬件电路的工作原理 (6)3.2.参数计算 (7)4.软件设计 (8)4.1.软件设计思想 (8)4.2.程序流程图 (9)4.3.程序清单 (10)5.系统仿真与调试 (11)5.1.实际调试或仿真数据分析 (11)5.2.分析结果 (13)6.结论 (12)7.参考文献 (13)8.附录 (14)1.项目概述:1.1.该设计的目的及意义温度的测量及控制,随着社会的发展,已经变得越来越重要。

而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。

在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。

它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。

而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。

通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。

1.2.该设计的技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。

炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。

若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。

当温度低于设定值时,单片机发出一个控制信号,启动加热器。

通过继电器的反复开启和关闭,使炉温保持在设定的温度围。

(1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现)(2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID)(3)实时显示温度和设置温度,显示精度为1℃(LED)。

(4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。

(5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。

(6)功率电路220 VAC供电,强弱电气电隔离2.系统设计2.1.设计思想以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。

要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温度过高或过低,以便采取必要的措施,来阻断或导通电炉进行加热或者冷却,以使温度保持在设定值,更可以通过LED显示设定值和温度实时值,可以设定一功能键,来切换是显示设定值还是温度实时值,另外如果想更改设定温度值,可以通过设定加减键来实现温度设定值的增减,而温度的控制过程可以通过软件编程实现最优控制,比如PID算法。

2.2.可行性方案分析实现温度控制的方法主要有以下几种。

1.方案一:采用纯硬件的闭环控制系统。

该系统的优点在于速度较快,但可靠性比较差控制精度比较低、灵活性小、线路复杂、调试、安装都不方便。

且要实现题目所有的要求难度较大。

2.方案二:FPGA/CPLD或采用带有IP核的FPGA/CPLD方式。

即用FPGA/CPLD完成采集,存储,显示及A/D等功能,由IP核实现人机交互及信号测量分析等功能。

这种方案的优点在于系统结构紧凑,可以实现复杂的测量与与控制,操作方便;缺点是调试过程复杂,成本较高。

3.方案三:单片机与高精度温度传感器结合的方式。

即用单片机完成人机界面,系统控制,信号分析处理,由前端温度传感器完成信号的采集与转换。

这种方案克服了方案一、二的缺点,所以本课题任务是基于单片机和温度传感器实现对温度的控制。

2.3. 总体方案(1)系统结构框图:3.硬件设计 3.1.硬件电路的工作原理3.1.1单片机选择单片机是整个控制系统的核心,要满足大存、高速率、通用性、价格便宜等要求,本设计选择87C51作为主控芯片。

87C51是INTEL 公司MCS-51系列单片机中基本型产品,它采用INTEL 公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的体系结构和指令系统。

它结合了HMOS 的高速和高密度技术及CHMOS 的低功耗特征,是80C51BH 的EPROM 版本,电改写光擦除的片4kB EPROM 。

87C51置中央处理单元、128字节部数据存储器RAM 、32个双向输入/输出(I/O)口、2个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片时钟振荡电路。

快速脉冲编程,如编写4kB 片ROM 仅需12秒。

此外,87C51还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。

在空闲模式下冻结CPU 而RAM 定时器、串行口和中断系统维持其功能。

掉电模式下,保存RAM 数据,时钟振荡停止,同时停止芯片其它功能。

87C51有PDIP 和PLCC 两种封装形式。

单 片 机 87C51 引 脚 图 主要功能特性:· 标准MCS-51核和指令系统· 4kB 部ROM (外部可扩展至64kB ) · 32个可编程双向I/O 口 · 128x8bit 部EPRAM(可扩充64kB 外给定值 87C51 单片机驱动电路 晶闸管主电路 被控对象 输出温度 采 样 电 路部存储器)· 2个16位可编程定时/计数器· 时钟频率0-16MHz· 5个中断源· 5.0V工作电压· 可编程全双工串行通信口· 布尔处理器· 2层优先级中断结构· 电源空闲和掉电模式· 快速脉冲编程· 2层程序加密位· PDIP和PLCC封装形式· 兼容TTL和CMOS逻辑电平(1)电源引脚Vcc和VssVcc(40脚):接+5V电源正端;Vss(20脚):接+5V电源正端。

(2)外接晶振引脚XTAL1和XTAL2XTAL1(19脚):接外部石英晶体的一端。

在单片机部,它是一个反相放大器的输入端,这个放大器构成采用外部时钟时,对于HMOS单片机,该引脚接地;对于CHOMS单片机,该引脚作为外部振荡信号的输入端。

XTAL2(18脚):接外部晶体的另一端。

在单片机部,接至片振荡器的反相放大器的输出端。

当采用外部时钟时,对于HMOS单片机,该引脚作为外部振荡信号的输入端。

对于CHMOS芯片,该引脚悬空不接。

(3)控制信号或与其它电源复用引脚有RST/VPD、ALE/P、PSEN和EA/VPP等4种形式。

RST/VPD(9脚):RST即为RESET,VPD为备用电源,所以该引脚为单片机的上电复位或掉电保护端。

当单片机振荡器工作时,该引脚上出现持续两个机器周期的高电平,就可实现复位操作,使单片机复位到初始状态。

当VCC发生故障,降低到低电平规定值或掉电时,该引脚可接上备用电源VPD(+5V)为部RAM供电,以保证RAM中的数据不丢失。

ALE/ P (30脚):当访问外部存储器时,ALE(允许地址锁存信号)以每机器周期两次的信号输出,用于锁存出现在P0口的地址信号。

PSEN(29脚):片外程序存储器读选通输出端,低电平有效。

当从外部程序存储器读取指令或常数期间,每个机器周期PESN两次有效,以通过数据总线口读回指令或常数。

当访问外部数据存储器期间,PESN信号将不出现。

EA/Vpp(31脚):EA为访问外部程序储器控制信号,低电平有效。

当EA 端保持高电平时,单片机访问片程序存储器4KB(MS—52子系列为8KB)。

若超出该围时,自动转去执行外部程序存储器的程序。

当EA端保持低电平时,无论片有无程序存储器,均只访问外部程序存储器。

对于片含有EPROM的单片机,在EPROM编程期间,该引脚用于接21V的编程电源Vpp。

(4)输入/输出(I/O)引脚P0口、P1口、P2口及P3口P0口(39脚~22脚):这8条引脚有两种不同功能,分别适用于两种不同情况。

第一种情况是89S51不带片外存储器,P0口可以作为通用I/O口使用,P0.0-P0.7用于传送CPU的输入/输出数据。

第二种情况是89S51带片外存储器,P0.0-P0.7在CPU访问片外存储器时用于传送片外存储器的低8位地址,然后传送CPU对片外存储器的读写数据。

P1口(1脚~8脚):这8条引脚和P0口的8条引脚类似,P1.7为最高位,P1.0为最低位。

当P1口作为通用I/O口使用时,P1.0-P1.7的功能和P0口的第一功能相同,也用于传送用户的输入和输出数据。

P2口(21脚~28脚):这组引脚的第一功能和上述两组引脚的第一功能相同,既它可以作为通用I/O口使用。

它的第二功能和P0口引脚的第二功能相配合,用于输出片外存储器的高8位地址。

P3口(10脚~17脚):P3.0~P3.7统称为P3口。

它为双功能口,可以作为一般的准双向I/O接口,也可以将每1位用于第2功能,而且P3口的每一条引脚均可独立定义为第1功能的输入输出或第2功能。

引脚第二功能P1.1 TXD(串行口输出端)P1.2 INT0(外部中断0请求输入端,低电平有效) P1.3 INT1(外部中断1请求输入端,低电平有效) P1.4 T0(定时器/计数器0计数脉冲端)P1.5 T1(定时器/计数器1计数脉冲端)P1.6 WR(外部数据存储器写选通输出端,低电平有效)P1.7 RD(外部数据存储器读选通输出端,低电平有效)3.1.2.温度传感器的选择本系统采用DALLAS半导体公司生产的一线式数字温度传感器DS18B20采集温度数据,DS18B20属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

它具有体积小,接口方便,传输距离远等特点。

1、DS18B20的主要特性1.1. 适应电压围更宽,电压围:3.0~5.5V,在寄生电源方式下可由数据线供电1.2. 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯1.3. DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路1.4. 温围-55℃~+125℃,在-10~+85℃时精度为±0.5℃1.5.可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温1.6. 在9位分辨率时最多在93.75ms把温度转换为数字,12位分辨率时最多在750ms把温度值转换为数字,速度更快1.7. 用户可分别设定各路温度的上、下限2、DS18B20的外形和部结构DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

相关主题