结构力学——力矩分配法
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
1000 kN
1000 kN
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
为了寻求计算超静定刚架更简捷的途径,自20世纪30年代 以来,又陆续出现了各种渐近法,如力矩分配法、无剪力分配 法、迭代法等。而这些方法的理论基础都是位移法,共同特点 是避免了组成和解算典型方程,而以逐次渐近的方法来计算杆 端弯矩,其结果的精度随计算轮次的增加而提高,最后收敛于 精确值。
二、力矩分配法的概念
0.3 0.3 -19.2 19.2
0.5 0.5 41
-24 60 -18 -18 120 2.2 -1.1 -1.1
0.1 M
-40.8 40.9
-60 -790 -0.6
-69.6
例题:用力矩分配法求图示结构弯矩图。
q 10kN/m
Mf
M MC
2.5m
3.5m
EI=const
2.0m
4.8m
杆端 B1 A1 1A 1B 1C C1
1/2 3/8 1/8
MF
S1B 3i S1A 4i S1C i
1A
4i
4i 3i
i
1/
2
1B
4i
3i 3i
i
3/
8
分配 传递
M
1C
4i
i 3i
i
1/ 8
q ql2/8
B
1 ql2/4 C
2ql
ql2/4 A
3ql2/64 ql2/64
B
1 ql2/16 C
第三节 多结点力矩分配法
⑶ 为了取消结点2 的刚臂,放松结点2 ,在结点2 加上新 的负不平衡力矩,为了只在2 点产生一个角位移,结点 1 再锁住,按基本运算进行力矩分配和传递。结点2 处 于暂时的平衡。
⑷ 传递弯矩的到来,又打破了1 点的平衡,1 点又有了新 的约束力矩M传,重复⑵、⑶两步,经多次循环后各结 点的约束力矩都趋于零,恢复到了原结构的受力状态和 变形状态。一般2~3个循环就可获得足够的精度。
S AD M S
( A)
可以看出,刚结点A在外力偶荷载作用下,结点A上各杆在A
端的弯矩与各杆的转动刚度成正比,由此我们进入分配系
数
Aj
SM Aj S
(
j
B、C、D)
( A)
定义:结点处,某杆的转动刚度与汇交于该结点的所有杆
件的转动刚度之和的比值。
特性:相交于的所有杆件的分配系数之和为1
弯矩分配:
力矩分解(因为 <1,C <1),所以几个轮回约束力矩就会
小到可以忽略了。通过逐渐逼近的方式直接求出杆端力矩。
1 . 变形逐渐趋于真实变形;刚臂反力逐渐趋于零。
2 . 释放顺序是任意的,但通常先释放不平衡力矩较大的分 配单元(这样收敛快)
3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
A EI
B
8m
EI C
6m
10 kN
30kN.m
60kN.m
M
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
100 M 100kN m
A
EI
B
15
EI C
8m
6m
M
0.7 0.3
M F 100
50 0 0
分 配
传0
递
35 15 15
M 100
15 15 15
第三节 多结点力矩分配法
要求:熟练掌握力矩分配法的基本概念与连续梁和无侧 移刚架的计算。掌握无剪力分配法的计算,了解用力矩分 配法计算有侧移刚架。
第一节 力矩分配法的基本概念
一、引言
对于超静定结构的内力计算,我们前面学习了两种基本的 方法—力法和位移法,二者的共同特点是都要建立和求解联立 方程组,当未知量太多时,计算量也相应的增大,同时,在求 得未知量后,还需要利用杆端弯矩的叠加公式求得杆端弯矩, 整个计算求解过程较繁琐。
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
(1)计算单跨超静定梁的固端弯矩 固端弯矩:常用的三种基本结构的单跨超静定梁,
在支座移动和几种常见的荷载作用下的杆端弯矩,可用力 法计算或在计算表中查得。
(2)计算结点各杆端的弯矩分配系数μ
(3)计算杆件由近端向远端传递的弯矩传递系数C
4、相关参数的概念
(1)转动刚度S:表示杆端对转动的抵抗能力,在 数值上等于杆端产生单位转角时所需要施加的力矩。
例题:用力矩分配法求图示结构弯矩图。
固定状态:
M
F AB
1 12
ql 2
100
kN m
M
F BA
100
kN m
M
F BC
M
F CB
0
放松状态:
不平衡力矩变号,再乘以 分配系数即为分配弯矩
M
BA
BA (RBP )
57.1
M
BC
BC (RBP )
42.9
q 12kN/m
A EI
10m
B EI
0.513 0.487
0.762 0.238
0.363 0.637
781 1020 1020 333 333 2880
123 116
11.0 312 160 152
58 972 1941606
6243.21094 547 21.2
417130 76 208
M
…. …. ….
….
M
423 423
1095 1095
(2)弯矩分配系数μ和弯矩分配
r 11
4i AB 3iAC
iAD
R1P M
1
R1P r
11
M 4i AB3iAC
iAD
M SAB SAC
SAD
M S
( A)
r 11
1
R1P
0
M AB
4i AB 1
S AB M S
( A)
M AC
3iAC 1
S AC M S
( A)
M
AD
i AD 1
1、力矩分配法:主要用于连续梁和无结点线位移(侧移) 刚架的计算,其特点是不需要建立和求解联立方程组, 而在其计算简图上直接进行计算或列表计算,就能直接 求得个杆端弯矩。
理论基础:位移法 力矩分配法 计算对象:杆端弯矩
计算方法:逐次逼近的方法 使用范围:连续梁和无结点线位移的刚架
2、力矩分配法的正负号规定
近端弯矩=分配系数×结点弯矩 远端弯矩=近端弯矩×传递系数
(3)弯矩传递系数和弯矩传递
传递系数C:表示当杆端发生转角时,杆件远端弯矩 与近端弯矩的比值。 当杆件的某一端发生转角时,在该端产生的弯矩称为 近端弯矩,另一端产生的弯矩称为远端弯矩。
远端弯矩与近端弯矩的比值称为弯矩传递系数。
CAj
M jA M Aj
SAB =4i 1
SAB =3i 1
A
EI
B
A
B
l
SAB = i
1 A
SAB =0 1
B
A
B
远端固定,SAB = 4i;远端铰支,SAB = 3i 远端滑动,SAB = i;远端自由,SAB = 0
说明:在SAB中,A端是施力端,也称为近端,B端称为远端
杆端转动刚度不仅与杆件的线刚度i有关,而且与远端 的支承情况有关。
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
N·m
MF M & MC
MC
0.429 0.571
3000 -1287 -1713
-184 97 105
-15 69
-2 11 -1201 1201
力矩分配法的理论基础是位移法,故力矩分配法中对杆 端转角、杆端弯矩、固端弯矩的正负号规定与位移法相 同,即都假设对杆端顺时针旋转为正号。作用于结点的 外力偶荷载、作用于附加刚臂的约束反力矩,也假定为 对结点或附加刚臂顺时针旋转为正号。
3、力矩分配法的三要素 (用力矩分配法计算连续梁和无侧移刚架,需要先 解决三个问题:)
用力矩分配法计算多结点的连续梁和无侧移刚架, 只需人为制造只有一个分配单元的情形。
方法:先固定,然后逐个放松。应用单结点的基 本运算,就可逐步渐近求出杆端弯矩。
第三节 多结点力矩分配法
经过一轮固定与放松,变形曲线与实际变形曲线已比较接 近,但还不是实际的变形,因为刚臂上还残存约束力矩,需要 再次进行一轮固定、放松过程。由于每次放松都是将一个约束
第七章 渐近法——力矩分配法
学习内容
转动刚度、分配系数、传递系数的概念及确定。 力矩分配法的概念,用力矩分配法计算连续梁和 无侧移刚架。 无剪力分配法的概念及计算。 超静定结构影响线及超静定结构的内力包络图。 利用对称性简化力矩分配法计算。