当前位置:文档之家› 水温自动控制系统设计

水温自动控制系统设计

水温自动控制系统设计摘要水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。

实现水温控制的方法很多,如单片机控制、PLC控制等等。

而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。

单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。

温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。

为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。

该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。

关键词:AT89S52;温度控制;PT1000;PIDDesign of Temperature Automatic ControlSystemABSTRACTThe temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system.In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value.Keywords:AT89S52; temperature control; PT1000; PID目录1 引言 (1)1.1 课题背景 (1)1.2 国内外研究现状 (1)1.3 研究方法 (1)2 系统方案 (2)2.1 水温控制系统设计任务和要求 (2)2.2 水温控制系统 (2)2.2.1 方案选择 (2)2.2.2 温度控制系统算法分析 (4)3 系统硬件设计 (9)3.1 总体设计框图及说明 (9)3.2 外部电路设计 (9)3.2.1 温度采集电路 (9)3.2.2 温度控制电路 (11)3.3 单片机系统电路设计 (11)3.3.1 A/D转换电路 (11)3.3.2 串口通讯部分电路 (14)3.3.3 数码显示电路 (16)4 系统软件设计 (17)4.1 程序框架结构 (17)4.2 程序流程图及部分程序 (17)4.2.1 主程序模块 (17)4.2.2 系统初始化 (19)4.2.3 按键程序 (19)4.2.4 A/D采样数据处理 (21)4.2.5 PID计算 (24)4.2.6 继电器控制 (25)5 系统安装调试与测试 (27)5.1 串口调试 (27)5.2 继电器测试 (27)5.3 温度采集与测试 (27)6 结论 (28)参考文献 (29)致谢 (30)1 引言1.1 课题背景温度控制是无论是从工业生产过程中,还是在日常生活中都起着至关重要的作用,过低的温度或者过高的温度都会使水资源失去应用的作用,从而造成水资源的巨大浪费。

特别是在当前全球水资源极度匮乏的情况下,我们就更应该掌握好对水温的控制,在环境恶劣或温度较高等场合下,为了保证生产过程正常安全地进行,提高产品的质量和数量,及减轻工人的劳动强度、节约能源,要求对加热炉炉温进行测示、显示、控制,使之达到工艺标准,以单片机为核心设计的水温控制系统,可以同时采集多个数据,并将数据通过通讯口送至上位机进行显示和控制。

1.2 国内外研究现状目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。

温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。

目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。

成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。

现在,我国在温度等控制仪表业与国外还有着一定的差距。

随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、价格低、可靠性高、适用范围大以及本身的指令系统等诸多优势,在各个领域、各个行业都得到了广泛应用。

1.3 研究方法本文主要介绍单片机温度控制系统的设计过程,其中涉及系统结构设计、元器件的选取和控制算法的选择、程序的调试和系统参数的整定。

以AT89S52为CPU,温度信号由Pt1000和电压放大电路提供。

电压放大电路用超低温漂移高精度运算放大器OP07将温度-电压信号进行放大,用单片机控制SSR固态继电器的通断时间以控制水温,系统控制对象为1升净水,容器为搪瓷器皿。

水温可以在环境温度降低时实现自动控制,以保持设定的温度基本不变,具有较好的快速性与较小的超调。

2 系统方案2.1 水温控制系统设计任务和要求该系统设计任务:设计一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。

水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

系统设计具体要求为:温度设定范围为40~90℃;环境温度降低时温度控制的静态误差≤1℃;采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量;用十进制数码管显示水的实际温度。

2.2 水温控制系统水温控制系统是一个过程控制系统,组成框图如图2-1所示,由控制器、执行器、被控对象及反馈作用的测量变送组成。

图2-1 控制系统框图除了以上的组成元件以外,还需要选择合适的算法以实现所要求的控制精度,以下我会对关键的元件以及电路的确定进行详细的分析。

因为方案选取的好坏将直接影响着整个系统实现效果的优劣。

2.2.1 方案选择方案一:采用8031作为控制器,使用最为普遍的器件ADC0804作模数转换,控制上使用对电阻丝加电使其升温和开动风扇使其降温。

此方案简易可行,器件的价格便宜,但8031内部没有程序存储器,需要扩展,增加了电路的复杂性。

方案二:此方案采用89S52单片机实现,此单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。

控制电路部分采用SSR固态继电器控制电炉丝的通断此方案电路简单并且可以满足题目中的各项要求的精度。

将两个方案相比较后可得出一个结论,采用Atmel单片机来实现本题目,无论是从结构上,还是从工作量上都有很大的优势,所以我最后选择使用AT89S52作为该控制系统的核心。

根据水的温度变化慢,并且控制精度不易掌握的特点,我们设计了以AT89S52单片机为检测控制中心的水箱温度自动控制系统,总体框图如图2-2所示。

图2-2 控制器设计总体框图温度控制采用改进的PID数字控制算法,数码显示采用3位LED静态显示。

该设计结构简单,控制算法新颖,控制精度高,有较强的通用性。

图2-3为整个水温控制系统的原理图,分别由测温电路,继电器控制电路,串口通讯电路,LED显示电路等部分组成。

图2-3 水温控制电路原理图2.2.2 温度控制系统算法分析系统算法控制采用工业上常用的位置型PID数字控制,并且结合特定的系统加以算法的改进,形成了变速积分PID—积分分离PID控制相结合的自动识别的控制算法。

该方法不仅大大减小了超调量,且有效地克服了积分饱和的影响,使控制精度大为提高。

长期以来国内外科技工作者对温度控制器进行了广泛深入的研究,研究了大批温度控制器,如性能成熟应用广泛的PID调节器、智能控制PID调节器、自适应控制等。

此处主要对一些控制器特性进行分析以便选择适合的控制方法应用于改造。

常用的控制算法有以下几种:1.经典的比例积分微分控制算法;2.根据动态系统的优化理论得到的自适应控制和最优控制方法;3.根据模糊集合理论得到模糊控制算法。

自适应控制、最优控制方法以及模糊控制算法是建立在精确的数学模型基础上的,在实时过程控制中,由于控制对象的精确数学模型难于建立,系统参数经常发生变化,运用控制理论进行综合分析要花很大代价。

同时由于所得到的数学模型过于复杂难于实现。

在实时控制系统中要求信号的控制信号的给出要及时,所以在目前的过程控制系统中较少采用自适应控制、最优控制方法和模糊控制算法。

目前在过程控制中应用较多的还是PI 控制算法、PD 控制算法和PID 控制算法。

水温控制系统的控制对象具有热储存能力大,惯性较大的特点,水在容器内的流动或热量传递都存在一定的阻力,因此可以归于具有纯滞后的一阶惯性环节。

相关主题