当前位置:文档之家› 基于汽车发动机飞轮的设计与制造

基于汽车发动机飞轮的设计与制造

目录一摘要 (3)二正文 (3)1 绪论 (3)1.1选题的意义与目的 (3)1.2飞轮的发展史 (4)2飞轮工作的原理及 (5)2.1飞轮的组成和材料的 (5)2.3飞轮原理及在发动机中的作用 (5)2.3飞轮的结构、功能及应力分析 (7)3飞轮的动态优化设计 (11)3.1 飞轮的动态优化设计的意义 (11)3.2 模型简化与方案选择 (12)3.3飞轮的动态有限元分析 (13)3.4飞轮的动态优化 (15)4飞轮浇铸工艺的设计 (18)4.1 无冒口铸造方案的确定 (18)4.2 无冒口方案的设计与实施 (18)5、飞轮的加工工艺及流程 (19)5.1飞轮主要加工技术要求分析 (19)5.2工艺方案分析 (21)5.3飞轮机械加工工艺路线的制定 (21)6结论 (23)7结束语 (23)三参考文献 (25)基于汽车发动机飞轮的设计与制造学号:09131050701265 姓名:王江专业:机械设计制造及其自动化摘要目的通过对汽车发动机飞轮的设计模拟的计算了飞轮的飞轮的质量和设计的合理性,使飞轮性能和质量得到了很好的保障。

对飞轮浇铸工艺的设计和加工技术要求、工艺方案的分析,有利于提高飞轮的产品质量、工作性能,节约了制造和加工的成本,为企业赢得了时间和效益。

方法利用相关理论知识和参数化建模,利用ANSYS软件进行动态有限元分析得出相应优化结果。

结合工作生产实际,明确了飞轮浇铸工艺和加工工艺。

结果在参数化建模、动态有限元分析和制定浇铸及加工工艺中制定多种不同的方案,在优化设计中,通过数据对比,方案二优于方案一。

结论基于有限元法的参数化建模可以快速动态的修改模型动态得到各种分析结果。

关键词:发动机飞轮,有限元分析,参数化建模,无冒口铸造,机械加工飞轮是汽车发动机中有重要作用但结构相对简单的零件之一,本文主要介绍了汽车发动机飞轮的发展史,工作原理,应力分析,动态优化设计,浇铸工艺的设计,机械加工流程等。

为了保证飞轮又足够的转动惯量、刚度和强度,并使飞轮在满足设计要求的前提下质量尽可能小,这里利用有限元分析软件ANSYS对某飞轮进行参数化建模,动态的分析了飞轮的应力场与位移场。

实践证明,利用数化建模可以大大地提高效率,并且可以在设计阶段的合理范围内任意取值进行分析,有利于缩短设计周期,降低制造成本。

从工作生产实际出发,研究了飞轮的无冒口铸造工艺及机械加工工艺规程,分析了飞轮在加工过程中的注意事项,并完成加工工序设计。

1 绪论1.1选题的意义与目的发动机后端带齿圈的金属圆盘称为飞轮。

飞轮用铸钢制成,具有一定的重量(汽车工程称为质量),用螺栓固定在曲轴后端面上,其齿圈镶嵌在飞轮外圆。

2飞轮工作的原理及应力分析2.1飞轮的组成和材料的选取飞轮总成(Flywheel assembly )一般由飞轮、齿圈、离合器定位销、轴承等组成,部分产品轴承用花键代替。

现在随着爱车一族的不断钻研扩展,发动机飞轮已演变出实用的好多类型,如双质量减震飞轮(主要用于柴油发动机),45#锻钢轻质量飞轮,铝合金T6飞轮,轻质量飞轮主要用于赛车和特殊爱好者使用,安装这种飞轮以后,发动机加速快,缺点是收油门后减速也快。

材质:一般使用铸铁:HT200 HT250 ;球铁:QT450-10、QT600-3、QT500-7 等,国外也有用45号钢制作的飞轮。

灰铸铁的力学性能与基体的组织和石墨的形态有关。

灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。

同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。

2.2飞轮原理及在发动机中的作用飞轮(Flywheel)装置在曲柄的轴的一端,是铸铁制造较重的轮盘,在爆发冲程传递回转力,由飞轮一时吸收储蓄,供给下一次动力冲程,能使曲柄轴圆滑的回转作用,外环的齿圈可供起时摇转引擎之用,背面与离合器片接触,成为离合器总成的主件飞轮是发动机在曲轴后端的较大的圆盘状的零件,它具有较大的转动惯量,具有以下功能:将发动机作功形成的部分能量储存起来,以克服其他形成的阻力,使曲轴均匀旋转。

通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来。

装有与起动机结合的齿圈,便于发动机启动。

飞轮,是发动机装在曲轴后端的较大的圆盘状零件,它具有较大的转动惯量,具有以下功能:将发动机作功行程的部分能量储存起来,以克服其他行程的阻力,使曲轴均匀旋转; 通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来;装有与起动机接合的齿圈,便于发动机起动。

驱动盘,也是飞轮的一种,材质用45号钢冲压成型,再压制齿圈。

飞轮是一个延著固定轴旋转的轮子或圆盘,能量以旋转动能的方式储存在转子中:212k E I ω=⋅⋅ 其中 ω 是角速度I 是质量相对轴心的转动惯量,转动惯量是物体抵抗力矩的能力,给予一定力矩,转动惯量越大的物体转速越低。

固体圆柱的转动惯量为212I mr =, 若是薄壁空心圆柱,转动惯量为2I mr =, 若是厚壁空心圆柱,转动惯量则为22121()2I m r r =+. 其中 m 表示质量,r 表示半径,在转动惯量列表中可以找到更多的信息。

在使用国际单位制计算时,质量、半径及角速度的单位分别是公斤、米,弧度/秒,所得到的结果会是焦耳。

由于飞轮可储存的能量是和转动惯量成正比,因此在设计飞轮时,会尽量在不变动质量的条件下,去增加其转动惯量,例如说中间搂空将,质量集中在飞轮的外围等作法。

在利用飞轮储存能量时,还需要考虑在转子不变形或断裂的前提下,飞轮可储存的能量上限,转子的环向应力(hoop stress )是主要的考量因素:22t r σρω=其中:σt 是转子外圈所受到的张应力ρ 是转子的密度r 是转子的半径ω 是转子的角速度飞轮储存的能量范例:以下是一些“飞轮”的范例及其储存的能量,I = kmr2, k 的计算方式请参考转动惯量列表(表1)。

表1转动惯量列表飞轮能量和材料的关系:对于相同尺寸外形的飞轮,其动能和环向应力及体积成正比:k t E V σ∝ 若以质量来表示,则其动能和质量成正比,也和单位密度的环向应力成正比:t k E m σρ∝ t σρ可以称为比强度(Specific strength )。

若飞轮使用材质的比强度越高,其单位质量下的能量密度也就就越大。

2.3飞轮的结构、功能及应力分析飞轮效应指为了使静止的飞轮转动起来,一开始你必须使很大的力气,一圈一圈反复地推,每转一圈都很费力,但是每一圈的努力都不会白费,飞轮会转动得越来越快。

达到某一临界点后,飞轮的重力和冲力会成为推动力的一部分。

这时,你无须再费更大的力气,飞轮依旧会快速转动,而且不停地转动。

这就是“飞轮效应”飞轮设计首先应用工程提高发动机应用配套对飞轮的基本要求。

包括适用机型,飞轮因负荷突变而需要稳定转速的基本参数,如质量、转动惯量,所需承受的最大转速,动力输出和离合器安装定位孔(面)的要求;安装起动电机和齿圈的要求。

然后根据要求确定飞轮轮缘尺寸。

腹板及轮辐过度连接区域结构、尺寸及厚度,轮毂连接定位结构及尺寸。

在此还应确定飞轮安装螺栓的规格和等级,以便飞轮安装部位的设计。

一般飞轮螺栓都采用10.9级或更高的螺栓。

在经过以上几个步骤,基本上确定了飞轮的直径、轮缘形状,辐板偏心量、飞轮开槽钻孔等本形式后,现应进行应力分析,这是飞轮设计中得关键一步。

应力分析中应考虑角加速度、振动、回转救应、动力输出和离合器负荷的影响。

现在说明应力分析的计算方法及材料的选取2.3.1离心应力飞轮是高速旋转运动件,其主要的离心应力是作用于飞轮栓安装孔剖面,BJ374飞轮离合器销孔剖面轮缘短,螺栓孔剖面轮缘长,离心力影响的危险剖面是螺栓孔剖面,其离心力应力为:2212A Sc M P R A ϖ=⋅⋅⋅ 其中式中:S :离心力产生的切向回应了M:轮缘的开状系数(rad/see/rpm )其是根据轮缘形状,面积转化为以下图1中得三种标准形式之一,计算查表确定M 。

图1轮缘标准形状尺寸B10飞轮已知Wr,R-轮缘近似径向厚度为,将轮缘划分成三部分(见图3.1),其部分等效面积计算和为(计算过程略)23405.8Tr Wr mm ⨯=3405.83405.8991.53.435Tr Wr === 则 59.4741A Wr T = 4.206Tr R= 查表图,线性插值2/sec 0.295rad M rom ⎛⎫= ⎪⎝⎭ρ:材料密度3/g mm飞轮材料一般选用灰铸铁250(HT250) ρ=0.013/g mm ω:飞轮计算转速,一般考虑50%的转速,W=1.5×2100=3150rpmR:飞轮外径B10飞轮:已知R=127A1:飞轮剖面径向无钻孔,开槽等的实心面积。

B10飞轮 A1=轮缘面积+圆盘面积+法兰面积=147129平安毫米As :飞轮剖面径向最小面积(包括去除所有的钻孔、开槽,凹入区域)。

B10飞轮 A2=A1-孔、槽、凹入区域面积=110718平方毫米则Sc=7751 psi对在应力计算中,轮缘长度大于轮辐厚度4倍以上,或轮缘伸出长度大于轮缘厚度3倍以上的,则用下列计算离心应力:3221028.4210()Ar Sc R psi Ar ρϖ-=⨯ 2.3.2 热应力:对不带离合器的飞轮设计,可不进行热应力计算,热应力计算公式如下: 112d t eff M E A S psi NV A =⋅ 式中,St :轮缘处产生的最大拉伸热效应力psi.M1:材料应力系数B10发动机飞轮,材料为HT250,查表M=0.396Ed:飞轮一离合器系统能量扩散系数,由发动机转速、离合器传输扭矩、啮合速度确定,对B10飞轮和Lipe14n-2离合器。

N :离合器摩擦片数目,Lipe14n-2离合器为双盘,所以N=2。

Weff 飞轮有效体积是指有关离合器工作区域的体积,一般转化标准的结构形式。

B10发动机飞轮 Weff :圆盘体积+轮缘有效体积(前、后缘) 圆盘体积:t σρ 后缘体积:由已知0L、0T 、0R ,则 00 6.7R T = 000.8744L T = 查表图,线性插值得:00.9effL T = 得:0.9 1.25 1.25n eff L =⨯= 2.3.3算最大全负荷转速飞轮所能承受的最大转速由应用工程根据发动机配套使用确定,飞轮限定的最大全负荷转速得超过3255rpm,根据上述Sr,St 和材料许用应力Sa,核算飞轮所能承受的最大转速。

相关主题