Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而Tk x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(lny E y E -是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为Logistic 线性回归。
Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic 变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。
因此评价模型的拟合度的标准变为似然值而非离差平方和。
定义1 称事件发生与不发生的概率比为 优势比(比数比 odds ratio 简称OR),形式上表示为OR=kx k x e pp βββ+++=- 1101 (4) 定义2 Logistic 回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称-2ˆln ()L β为估计值βˆ的拟合似然度,该值越小越好,如果模型完全拟合,则似然值ˆ()L β为1,而拟合似然度达到最小,值为0。
其中ˆ()lnL β表示βˆ的对数似然函数值。
定义3 记)ˆ(βVar 为估计值βˆ的方差-协方差矩阵,21)]ˆ([)ˆ(ββVar S =为βˆ的标准差矩阵,则称 k i S w iii i ,,2,1,]ˆ[2 ==β (5)为iβˆ的Wald 统计量,在大样本时,i w 近似服从)1(2χ分布,通过它实现对系数的显著性检验。
定义4 假定方程中只有常数项0β,即各变量的系数均为0,此时称20ˆˆ2[ln ()ln ()]L L χββ=-- (6) 为方程的显著性似然统计量,在大样本时,2χ近似服从)(2k χ分布。
1.2 Logistic 模型的分类及主要问题根据研究设计的不同,Logistic 回归通常分为成组资料的非条件Logistic 回归和配对资料的条件Logistic 回归两种大类。
还兼具两分类和多分类之分,分组与未分组之分,有序与无序变量之分。
具体如下: 两分类非条件Logistic 回归:分组数据的Logistic 回归,未分组数据的Logistic 回归; 多分类非条件Logistic 回归:无序变量Logistic 回归,无序变量Logistic 回归; 条件Logistic 回归:1:1型、1:M 型和M:N 型Logistic 回归。
关于Logistic 回归,主要研究的内容包括:1. 模型参数的估计及检验 2. 变量模型化及自变量的选择 3. 模型评价和预测问题 4. 模型应用2 Logistic 模型的参数估计及算法实现2.1 两分类分组数据非条件Logistic 回归因变量(反应变量)分为两类,取值有两种,设事件发生记为y=1,不发生记为 y=0,设自变量T k x x x X ),,,(21 =是分组数据,取有限的几个值;研究事件发生的概率)|1(X y P =与自变量X 的关系,其Logistic 回归方程为:k k x x X y P X y P βββ+++=== 110)|0()|1(ln 或 kx k x kxk x ee X y P ββββββ+++++++== 1101101)|1( 例2.1.1 分组数据[1]在一次住房展销会上,与房地产商签订初步购房意向书的有n=325人,在随后的3个月时间内,只有一部分顾客购买了房屋。
购买房屋的顾客记为1,否则记为0。
以顾客的年家庭收入(万元)作为自变量X ,对数据统计后如表2.1.1所示,建立Logistic 回归模型。
表2.1.1 购房分组数据例2.1.2 药物疗效数据[2]为考察某药物疗效,随机抽取220例病人并分配到治疗组和对照组,治疗组采用治疗药物,对照组采用安慰剂。
治疗一段时间后观察病人的疗效,得到表2.1.2数据。
设y 为疗效指标(y=1 有效,y=0无效),1x 为治疗组指标(1为治疗组,0为对照组),2x 为年龄组指标(1为>45岁,0为其他)。
上述两个例子数据都是经过统计加工后的分组数据,对此类数据进行Logistic 回归,首先要明确应变量对应事件的发生概率如何确定和进行Logit 变换,其次才能建立Logistic 回归。
为便于数据处理,我们将此类数据的格式作个约定,排列格式为(组序号,自变量X ,该组事件发生数,该组总例数)。
表2.1.3 分组数据的标准格式表2.1.1 改造表表2.1.2 改造表经过改造后,可得我们关心的事件的发生的频率为 n i n m p i ,,2,1,ii==该组总例数该组发生事件数。
其中n为分组数,然后作Logit 变换,即iii i p p p Logit p -==1ln )(~。
变换后的数据,形式上已经可以采用一般的线性回归的处理方式来估计回归参数了。
此时方程变为:∑==+=kj ij j i n i x p 10,,2,1,~ββ 当然这样处理并没有解决异方差性,当i n 较大时,i p ~的近似方差为: )(,)1(1)~(i i i i i i y E n p D =-≈πππ (7)所以选择权重 n i p p n i i i i ,,2,1),1( =-=ω,最后采用加权最小二乘法估计参数。
注意,分组数据的Logistic 回归只适用于大样本分组数据,对小样本的为分组数据不适用,并且以组数n 为回归拟合的样本量,明显降低了拟合精度,在实际应用中必须谨慎。
求解算法及步骤:1.依据分组数据的标准格式,计算频率i p 、Logit 变换i p ~和权重i ω 2.构建加权最小二乘估计:∑∑∑∑====--=--n i kj ij j i i i i n i k j ij j i i x y x y 11201120)(min )(min βωβωωββω (8)令 i i i y y ω=*,T ik i i i i i x x X ),,,(1*ωωω =,T k ),,,(10ββββ =则方程又变成一般的线性回归模型:∑=-ni i T i X y12**)(minβ (9)3.构造增广矩阵21****][+⨯+k k T TY X X X利用消去法得]ˆ)ˆ([ββVar I =矩阵,得到估计βˆ其中2,1++K K I 为残差平方和SE , 回归方差1ˆ2--=k n SEσ各系数检验采用 )1(~ˆˆ--=k n t I t ii i i σβ总平方和∑∑∑===-=ni ni ini ii ii y yST 112122)()(ωωω,回归平方和SE ST SR -=总平方和求解相当于拟合i i y ωβ*0*=方程的残差平方和,故得上式ST所以方程的检验为)1,(~)1/(/----=k n k F k n SE kSR F例2.1.1的求解过程如下(由LLLStat 统计软件计算):表2.1.4 数据Logit 变换及权重家庭年收入x 实际购买mi 签订意向ni比例pi 逻辑变换Logit 权重ni*pi(1-pi) 1.500000 8 25 0.320000 -0.753772 5.440000 2.500000 13 32 0.406250-0.3794907.718750 3.500000 26 58 0.448276 -0.207639 14.344828 4.500000 22 52 0.423077 -0.310155 12.692308 5.500000 20 43 0.465116 -0.139762 10.697674 6.500000 22 39 0.564103 0.257829 9.589744 7.500000 16 28 0.571429 0.287682 6.857143 8.500000 12 21 0.571429 0.287682 5.142857 9.50000010150.666667 0.6931473.333333表2.1.5 回归模型基本信息 总样本 9求解方法 加权最小二乘 仅常数项beta0 -0.095029 方程F 统计量 51.982160 F 分布自由度 1,7 方程检验p 值 0.000176 总平方和 8.798294 回归平方和 7.754112 残差平方和1.044181表2.1.6 分组Logistic 回归系数检验序号 均值回归系数系数标准误 t 统计量 自由度df检验P 值 常数项 2.837815 -0.848882 0.113578 -7.473994 7 0.000056 家庭年收入x14.901140 0.1493230.0207117.20986570.000056表2.1.7 1][-X X T0.086479 -0.014517 -0.014517 0.002876本例Logistic 模型的回归方程:xe xe pi 149323.0848882.0149323.0848882.01ˆ+-+-+=对于多分类无序自变量的Logistic 回归,即某个自变量为m 个水平的名义变量(如治疗方法A,B,C ),只需要引入m -1(2个)个哑变量,然后采用上述方法进行分析。