当前位置:文档之家› 硫化氢腐蚀

硫化氢腐蚀

硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。

而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。

H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。

H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。

2.石油工业中的来源油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。

3.石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。

干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。

硫化氢腐蚀机理1.湿硫化氢环境的定义(1)国际上湿硫化氢环境的定义美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准:⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa;⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。

(2)国内湿硫化氢环境的定义“在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。

(3)硫化氢的电离在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:H2S = H+ + HS- (1)HS- = H+ + S2- (2)2.硫化氢电化学腐蚀过程阳极: Fe - 2e → Fe2+阴极: 2H+ + 2e → Had + Had → 2H → H2↑↓[H]→ 钢中扩散其中:Had - 钢表面吸附的氢原子[H] - 钢中的扩散氢阳极反应产物: Fe2+ + S2- → FeS ↓注:钢材受到硫化氢腐蚀以后阳极的最终产物就是硫化亚铁,该产物通常是一种有缺陷的结构,它与钢铁表面的粘结力差,易脱落,易氧化,且电位较正,因而作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀。

硫化氢引起氢损伤的腐蚀类型反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤1.氢压理论:与形成氢致鼓泡原因一样,在夹杂物、晶界等处形成的氢气团可产生一个很大的内应力,在强度较高的材料内部产生微裂纹,并由于氢原子在应力梯度的驱使下,向微裂纹尖端的三向拉应力区集中,使晶体点阵中的位错被氢原子“钉扎”、钢的塑性降低,当内压所致的拉应力和裂纹尖端的氢浓度达到某一临界值时,微裂纹扩展,扩展后的裂纹尖端某处氢再次聚集、裂纹再扩展,这样最终导致破断。

2.湿H2S环境中的开裂类型:氢鼓泡(HB)、氢致开裂(HIC)、硫化物应力腐蚀开裂(SSCC)、应力导向氢致开裂(SOHIC)。

(1)氢鼓泡(HB)腐蚀过程中析出的氢原子向钢中扩散,在钢材的非金属夹杂物、分层和其他不连续处易聚集形成分子氢,由于氢分子较大难以从钢的组织内部逸出,从而形成巨大内压导致其周围组织屈服,形成表面层下的平面孔穴结构称为氢鼓泡,其分布平行于钢板表面。

它的发生无需外加应力,与材料中的夹杂物等缺陷密切相关。

(2)氢致开裂(HIC)在氢气压力的作用下,不同层面上的相邻氢鼓泡裂纹相互连接,形成阶梯状特征的内部裂纹称为氢致开裂,裂纹有时也可扩展到金属表面。

HIC的发生也无需外加应力,一般与钢中高密度的大平面夹杂物或合金元素在钢中偏析产生的不规则微观组织有关。

(3)硫化物应力腐蚀开裂(SSCC)湿H2S环境中腐蚀产生的氢原子渗入钢的内部固溶于晶格中,使钢的脆性增加,在外加拉应力或残余应力作用下形成的开裂,叫做硫化物应力腐蚀开裂。

工程上有时也把受拉应力的钢及合金在湿H2S及其它硫化物腐蚀环境中产生的脆性开裂统称为硫化物应力腐蚀开裂。

SSCC通常发生在中高强度钢中或焊缝及其热影响区等硬度较高的区域。

硫化物应力腐蚀开裂(SSCC)的特征:在含H2S酸性油气系统中,SSCC主要出现于高强度钢、高内应力构件及硬焊缝上。

SSCC是由H2S腐蚀阴极反应所析出的氢原子,在H2S的催化下进入钢中后,在拉伸应力作用下,通过扩散,在冶金缺陷提供的三向拉伸应力区富集,而导致的开裂,开裂垂直于拉伸应力方向。

硫化物应力腐蚀开裂(SSCC)的本质:SSCC的本质属氢脆。

SSCC属低应力破裂,发生SSCC的应力值通常远低于钢材的抗拉强度。

SSCC具有脆性机制特征的断口形貌。

穿晶和沿晶破坏均可观察到,一般高强度钢多为沿晶破裂。

SSCC破坏多为突发性,裂纹产生和扩展迅速。

对SSC敏感的材料在含H2S酸性油气中,经短暂暴露后,就会出现破裂,以数小时到三个月情况为多。

硫化氢应力腐蚀和氢致开裂是一种低应力破坏,甚至在很低的拉应力下都可能发生开裂。

一般说来,随着钢材强度(硬度)的提高,硫化氢应力腐蚀开裂越容易发生,甚至在百分之几屈服强度时也会发生开裂。

硫化物应力腐蚀和氢致开裂均属于延迟破坏,开裂可能在钢材接触H2S 后很短时间内(几小时、几天)发生,也可能在数周、数月或几年后发生,但无论破坏发生迟早,往往事先无明显预兆。

(4)应力导向氢致开裂(SOHIC)在应力引导下,夹杂物或缺陷处因氢聚集而形成的小裂纹叠加,沿着垂直于应力的方向(即钢板的壁厚方向)发展导致的开裂称为应力导向氢致开裂。

其典型特征是裂纹沿“之”字形扩展。

有人认为,它也是应力腐蚀开裂(SCC)的一种特殊形式。

SOHIC也常发生在焊缝热影响区及其它高应力集中区,与通常所说的SSCC不同的是SOHIC对钢中的夹杂物比较敏感。

应力集中常为裂纹状缺陷或应力腐蚀裂纹所引起,据报道,在多个开裂案例中都曾观测到SSCC 和SOHIC并存的情况。

(5) 应力腐蚀开裂(SCC)的危害应力腐蚀开裂是环境引起的一种常见的失效形式。

美国杜邦化学公司曾分析在4年中发生的金属管道和设备的685例破坏事故,有近60%是由于腐蚀引起,而在腐蚀造成的破坏中,应力腐蚀开裂占13.7%。

根据各国大量的统计,在不锈钢的湿态腐蚀破坏事故中,应力腐蚀开裂甚至高达60%,居各类腐蚀破坏事故之冠。

应力腐蚀开裂的频繁发生及其造成的巨大危害,引起了人们的关注。

硫化氢腐蚀的影响因素1.材料因素在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。

⑴显微组织对应力腐蚀开裂敏感性按下述顺序升高:铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。

注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。

(2)强度和硬度随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。

材料硬度的提高,对硫化物应力腐蚀的敏感性提高。

材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。

油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。

⑶合金元素及热处理有害元素:Ni、Mn、S、P;有利元素:Cr、Ti碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。

镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。

原因是镍含量的增加,可能形成马氏体相。

所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。

含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。

在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。

铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬0.5%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。

不论铬含量如何,被试验钢的稳定性未发现有差异。

也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。

但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。

钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

钛(Ti):钛对低合金钢应力腐蚀开裂敏感性的影响也类似于钼。

试验证明,在硫化氢介质中,含碳量低的钢(0.04%)加入钛(0.09%Ti),对其稳定性有一定的改善作用。

锰(Mn):锰元素是一种易偏析的元素,研究锰在硫化物腐蚀开裂过程的作用十分重要。

当偏析区Mn、C含量一旦达到一定比例时,在钢材生产和设备焊接过程中,产生出马氏体/贝氏体高强度、低韧性的显微组织,表现出很高的硬度,对设备抗SSCC是不利的。

对于碳钢一般限制锰含量小于1.6%。

少量的Mn能将硫变为硫化物并以硫化物形式排出,同时钢在脱氧时,使用少量的锰后,也会形成良好的脱氧组织而起积极作用。

在石油工业中是制造油管和套管大都采用含锰量较高的钢,如我国的36Mn2Si钢。

(提高硬度)硫(S):硫对钢的应力腐蚀开裂稳定性是有害的。

随着硫含量的增加,钢的稳定性急剧恶化,主要原因是硫化物夹杂是氢的积聚点,使金属形成有缺陷的组织。

同时硫也是吸附氢的促进剂。

因此,非金属夹杂物尤其是硫化物含量的降低、分散化以及球化均可以提高钢(特别是高强度钢)在引起金属增氢介质中的稳定性。

磷(P):除了形成可引起钢红脆(热脆)和塑性降低的易熔共晶夹杂物外,还对氢原子重新组合过程(Had + Had → H2↑)起抑制作用,使金属增氢效果增加,从而也就会降低钢在酸性的、含硫化氢介质中的稳定性。

⑷冷加工经冷轧制、冷锻、冷弯或其他制造工艺以及机械咬伤等产生的冷变形,不仅使冷变形区的硬度增大,而且还产生一个很大的残余应力,有时可高达钢材的屈服强度,从而导致对SSCC敏感。

一般说来钢材随着冷加工量的增加,硬度增大,SSCC的敏感性增强。

2.环境因素的影响⑴硫化氢浓度从对钢材阳极过程产物的形成来看,硫化氢浓度越高,钢材的失重速度也越快。

相关主题