当前位置:文档之家› 聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。

在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。

而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。

预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。

表1列出近期投产和正在建设的聚丙烯装置的地点和产能。

表1 近期投产和在建聚丙烯装置在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。

这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。

另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。

1 聚丙烯基本知识1.1 树脂与塑料的定义和分类树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。

在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。

塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。

热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。

热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

通用塑料(General Plastics):指产量大、用途广、成型加工性能好、价格相对便宜的塑料。

以五大通用树脂为基础原料的塑料为聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)。

工程塑料(Engineering Plastics):指具有高性能,可以作为工程结构件的塑料。

工程塑料又分为通用工程塑料和特殊工程塑料,前者如聚酰胺(PA)、聚甲醛(POM)、聚酯(PET和PBT)、聚碳酸酯(PC)、改性聚苯醚(MPPO),其使用温度一般在150℃以下,而特种工程塑料是指使用温度可达150℃以上的工程塑料,如聚砜(PSF)、聚苯硫醚(PPS)、聚酰亚胺(PI)、聚四氟乙烯(PTFE)等。

1.2 聚丙烯(Polypropylene,缩写为PP)的种类与特性2.2.1聚丙烯的基本概念聚丙烯是以丙烯(CH3—CH=CH2)为单体,通过加聚反应得到的高分子聚合物,其反应特征一是瞬间完成,二是没有小分子化合物伴随产生。

采用齐格勒—纳塔催化剂可以得到高分子量的结晶性PP。

根据—CH3基团在空间排布的规律,PP分为等规、间规和无规三种聚合物。

只有等规度高的PP才能生成良好的结晶区,才能具有我们所需要的优良性能。

等规聚丙烯的晶体形态有α、β、γ、δ和拟六方五种,最常见的是α晶态,属单斜晶系。

α晶态在138℃左右形成,其熔点为180℃。

拟六方态也叫次晶结构,又叫蝶状液晶。

当熔融态的等规PP被急冷至70℃以下,或在70℃以下进行冷拉伸时,就会生成拟六方态晶体,此时PP的硬度和刚性减小,而冲击强度和透明性提高。

等规PP从熔融状态逐渐冷却时形成的晶体为球晶,结晶温度越高,球晶越大,反之球晶越小。

球晶越大,性能越脆,球晶大小直接影响到PP材料的冲击强度。

在结晶型塑料中,结晶度对材料的性能影响最大。

结晶度即材料中结晶部分重量占材料总重量的百分数。

PP的结晶度可通过使用水—乙醇体系的密度梯度管测定其密度来求得。

注塑成型的PP结晶度一般为50~70%,改变成型条件和后处理条件,可以改变结晶度。

结晶需要晶核,如果PP结晶时存在大量晶核,可以提高结晶度和减小球晶尺寸,从而可以提高PP的屈服强度、冲击强度和表面硬度,同时还可以改进PP的透明性和光泽性,降低成型加工温度,缩短成型周期,得到残留内应力低的性能均衡的制品,特别有利于成型大型制品。

通常增加晶核的办法是添加成核剂。

PP分子量的大小和分布也直接影响着PP塑料材料性能和加工性能。

通常从PP的熔体流动速率(MFI)可以了解到PP分子量的大小和分布情况。

MFI越大,表示PP的分子量越小。

不同PP的MFI可从零点几到几十,单位为g/10min。

分子量分布可通过Q值(重均分子量与数均分子量之比)反映出来,Q值越大,分子量分布越宽。

通常PP的Q值为10~40。

PP的分子量越高,即MFI越小,材料的拉伸强度、断裂伸长率和冲击强度都越高,而透明性、光泽及表面硬度则越低。

2.2.2聚丙烯的种类1)按聚丙烯分子中甲基(—CH3)的空间位置不同分为等规、间规和无规三类等规聚丙烯(全同立构聚丙烯),英文缩写为IPP从立体化学来看,IPP分子中每个含甲基(—CH3)的碳原子都有相同的构型,即如果把主链拉伸(实际呈线团状),使主链的碳原子排列在主平面内,则所有的甲基(—CH3)都排列在主平面的同一侧。

我国各石化企业生产的均聚聚丙烯都属于等规聚丙烯,基本性能如前所述,典型产品如北京燕山石化的PP2401,扬子石化的F401,齐鲁石化的T30S等。

1.2 聚丙烯改性技术实例1.2.1 以PP为载体的碳酸钙填充母料碳酸钙填充母料自上世纪八十年代初诞生以来,已为塑料加工行业和全社会做出了巨大贡献,年产量达一百多万吨,是改性塑料重要的品种之一。

填充母料的载体最初使用的是聚丙烯聚合时的副产物——无规聚丙烯(APP),故亦称之为APP母料。

后因北京燕山石化公司技术改造,无规聚丙烯的来源枯竭,而碳酸钙作为合成树脂紧缺年代的替代物,市场需求旺盛。

在此背景下以聚乙烯树脂为载体的碳酸钙填充母料应运而生,如LDPE1F7B至今仍然是多数填充母料的主要原料。

由于填充母料的主要用途是聚丙烯编织袋用的扁丝和打包带,从价格、相容性和扁丝强度等方面考虑,使用聚丙烯为载体树脂更适合于此种填充母料。

二十世纪九十年代初,当时的轻工业部塑料加工应用研究所率先推出以粉状聚丙烯为载体树脂的碳酸钙填充母料,称之为PPM母料,并于一九九二年获得国家级新产品称号。

PPM母料以小本体PP粉料为载体,在价格上比起1F7B等PE树脂有显著优势,至今也仍保持着1000元/吨以上的差价。

同时PP本身的密度低,意味着相同质量的树脂有更多数量的聚合物承担载体树脂的任务。

此外PP的强度高于PE,同样情况下可使扁丝、打包带等具有更高的强度[8][9],见表13、表14。

表13 使用不同载体树脂填充母料的PP扁丝性能表14 使用载体不同填充母料制成的PP打包带的性能将不同载体树脂制成的填充母料用于PP注塑制品时,也会得到与扁丝、打包带等制品类似的结果,即将PP为载体树脂的填充母料与其它树脂为载体的填充母料相比,按QB 1126-91《聚烯烃填充母料》行业标准规定制成的注塑样条中,当配方相同、制样设备、条件相同时,PP为载体的填充母料效果最好,见表15。

表15 按QB 1126-91制成的注塑样条性能以PP为载体的碳酸钙填充母料生产要点如下:①粉状PP比粒状PP更便宜,更易与碳酸钙混合均匀,应优先使用。

②粉状PP的熔体流动速率不宜过大,4~10g/10min为好。

③粉状PP中没有加入抗氧剂、润滑剂等助剂,必须适量添加。

④粉状PP在存放过程中会逐渐降解,放出酸味,因此一定要问清生产时间,并及时使用,最好在聚合出后的一个月内用完。

⑤以粉状PP为载体的碳酸钙填充母料可以使用同向平行双螺杆挤出机加工,碳酸钙的比例可以达到80%以上。

关键问题是不能使用模面风冷热切造粒,也不宜使用拉条水冷造粒,只能使用传送带风冷方式造粒。

1.2.2 以代替ABS为主要目标的改性聚丙烯专用料(1)日本卡尔普株式会社的CALP专用料组成、性能及用途[10]CALP专用料在很多场合可以替代价格昂贵的ABS,但仍然有明显的不足。

·密度比ABS大;·表面硬度低,不耐刻划;·刚性不足;·表面光泽度低;·表面涂装性差;·成型尺寸收缩率大。

原来使用ABS的注塑成型模具需加以修改才能使用改性PP专用料。

(1)高光泽PP专用料表33 热塑性低烟无卤阻燃电缆料性能1.1.2 玻纤增强聚丙烯[23]玻璃纤维添加到聚丙烯中可提高拉伸强度、弯曲弹性模量、洛氏硬度以及热变形温度等,其电性能不受影响,耐化学腐蚀性、耐水性等不变,只是断裂伸长率显著降低,缺口冲击强度变化不大。

随玻纤含量增加,增强聚丙烯的性能见表34。

表34 玻纤增强聚丙烯的性能玻纤增强聚丙烯的抗蠕变性得到改善,可以比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。

此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。

玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但与其它塑料相比,仍然属良好的加工流动性。

提高成型加工温度可使其流动性得到改善。

通常制备玻纤增强聚丙烯是将长纤维从靠近机头一端的加料口加入,直接与已熔融的聚丙烯物料混合,这主要是为避免在双螺杆挤出机中停留时间过长而被多次剪切,长径比减小,影响增强效果。

纤维的长度(指在最后成型的塑料制品中)应在0.1~1mm范围内,如长度低于0.04mm,则会大大影响增强效果。

此外玻纤表面处理也十分重要。

使用硅烷偶联剂,如TTS,可以使玻纤与PP之间有很好的相界面。

中科院化学所研制的玻纤增强聚丙烯及国内外部分厂家同类产品的性能见表35[24]。

表35 玻纤增强聚丙烯的性能2 改性聚丙烯发展动向聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有一些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。

2.1 透明改性PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,可以得到透明的薄膜,但有一定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有一定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。

经一定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至可以和典型的透明塑料(如PET、PVC、PS等)相媲美。

相关主题