数字信号处理技术的最新发展电子与信息工程学院12S005044 郭晓江摘要:数字信号处理(DSP,digital signal processing)是一门涉及许多领域的新兴学科,在现代科技发展中发挥着极其重要的作用。
近年来,随着半导体技术的进步,处理器芯片的处理能力越来越强大,使得信号处理的研究可以主要放在算法和软件方面,不再像过去那样需要过多考虑硬件。
由于它的出色性能,DSP目前被广泛应用于数字通信、信号处理、工业控制、图像处理等领域。
自从数字信号处理器问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。
随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。
数字信号处理(DSP)是广泛应用于许多领域的新兴学科,因其具有可程控、可预见性、精度高、稳定性好、可靠性和可重复性好、易于实现自适应算法、大规模集成等优点,广泛应用于实时信号处理系统中。
DSP技术在数据通信、汽车电子、图像处理以及声音处理等领域应用广泛。
DSP国际发展现状国外的商业化信号处理设备一直保持着快速的发展势头。
欧美等科技大国保持着国际领先的地位。
例如美国DSP research公司,Pentek公司,Motorola公司,加拿大Dy4公司等,他们很多已经发展到相当大的规模,竞争也愈发激烈。
我们从国际知名DSP技术公司发布的产品中就可以了解一些当今世界先进的数字信号处理系统的情况。
以Pentek公司一款处理板4293为例,使用8片TI公司300 MHz的TMS320C6203芯片,具有19 200 MIPS的处理能力,同时集成了8片32 MB的SDRAM,数据吞吐600 MB/s。
该公司另一款处理板4294集成了4片Motorola MPC7410 G4 PowerPC处理器,工作频率400/500 MHz,两级缓存256K×64 bit,最高具有16MB 的SDRAM。
ADI公司的TigerSHARC芯片也由于其出色的协同工作能力,可以组成强大的处理器阵列,在诸多领域(特别是军事领域)获得了广泛的应用。
以英国Transtech DSP公司的TP-P36N为例,它由4~8片TS101b(TigerSharc)芯片构成,时钟250 MHz,具有6~12 GFLOPS的处理能力。
DSP应用产品获得成功的一个标志就是进入产业化。
在以往的20年中,这一进程在不断重复进行,而且周期在不断缩小。
在数字信息时代,更多的新技术和新产品需要快速地推上市场,因此,DSP的产业化进程还是需要加速进行。
随着竞争的加剧,DSP生产商随时调整发展规划,以全面的市场规划和完善的解决方案,加上新的开发历年,不断深化产业化进程。
2002年1月7日~11日,在美国拉斯维加斯举行的全球最大的消费类电子产品展CES (Consumer Electronic Show),以及2月1 日在英国伦敦科学博物馆开幕“通向未来”科学技术展,展示了最新研究开发的DSP 新技术新产品在通信领域的应用。
DSP制造商新推出一系列的产品,并且都瞄准了通信领域的应用。
作为处理数字信号的DSP技术,为人们快速的获取、分析和利用有效信息奠定了基础,必将进一步得到社会各界的普遍关注,由此可见,DSP技术在发展经济、推动社会进步方面的重要作用,是十分明显的。
相信在不久的将来,随着制造技术和新材料技术的不断发展DSP技术将会出现一个飞跃,达到一个新的水平。
全球DSP产品将向着高性能、低功耗、加强融合和拓展多种应用的趋势发展,DSP芯片将越来越多地渗透到各种电子产品当中,成为各种电子产品尤其是通信类电子产品的技术核心。
DSP未来的发展趋势,大致可以分为以下几个方向:在定制DSP中,LSI Logic、3DSP及新成立的Siroyan公司展示了新颖的DSP 产品,这些产品涵盖了从3G无线基站到无线局域网(WLAN)广泛应用。
Equator 技术公司推出一个数字视频新方案,Broadcom公司第一次提供piceEngine的DSP 解决方案,可以应用于网络电话V oIP网关。
LSI Logic公司新推出第二代ZSP 结构以及首次采用该结构实现的内核ZSP600,它是在ZSP400基础上扩展的软件兼容版本,嵌入的内核采用0.13mm工艺技术,运行于300MHz,将能够实现更高的速度和更低的功耗。
3DSP公司推出了其DSP技术的首个特殊应用实现方案UniPHY,该方案针对宽带应用中物理层(PHY)的信号处理进行优化,特别是802.11a和802.11b WLAN。
该单指令多重数据内核运行于400MHz,将来可达1GHz。
据称这是首款针对宽带物理层的信号处理进行优化的DSP内核,它是一种能够实现具有成本效益的多标准方案。
UniPHY最初是在2001年底推出的,而委托台积电(TSMC)公司生产的开发芯片将于2002年第二季度推出。
作为定制DSP市场中的最新进入者,Siroyan公司也展示了其OneDSP结构,它采用200MHz的VLIW内核群组实现DSP和RISC指令,通常可省略独立的通用MPU。
Siroyan首席设计师Nigel Topham认为该公司开发的处理器可以运行于两种模式,这是通信应用中的处理器最经常使用的两类代码。
OneDSP结构中每个内核都有两套执行单元,可以分别处理DSP和类似RISC指令。
第一个产品SRA328已于2002年4月推出。
DSP未来的发展趋势全球DSP产品将向着高性能、低功耗、加强融合和拓展多种应用的趋势发展,DSP芯片将越来越多地渗透到各种电子产品当中,成为各种电子产品尤其是通信类电子产品的技术核心。
DSP未来的发展趋势,大致可以分为以下几个方向:(1)数字信号处理器的内核结构进一步改善,多通道结构和单指令多重数据(SIMD)、特大指令字组(VLIM)将在新的高性能处理器中将占主导地位。
(2)DSP 和微处理器的融合微处理器是低成本的,主要执行智能定向控制任务的通用处理器能很好执行智能控制任务,但其数字信号处理功能很差。
而DSP的功能正好与之相反。
在许多应用中均需要同时具有智能控制和数字信号处理两种功能,如数字蜂窝电话就需要监测和声音处理功能。
因此,把DSP和微处理器结合起来,用单一芯片的处理器实现这两种功能,将加速个人通信机、智能电话、无线网络产品的开发,同时简化设计,减小PCB体积,降低功耗和整个系统的成本。
(3)DSP 和高档CPU的融合大多数高档GPP,如Pentium 和PowerPC都是SIMD指令组的超标量结构,速度很快。
LSI Logic 公司的LSI401Z采用高档CPU的分支预示和动态缓冲技术,结构规范,利于编程,不用担心指令排队,使得性能大幅度提高。
Intel公司涉足数字信号处理器领域将会加速这种融合。
(4)DSP 和SOC的融合SOC(System-On-Chip)系统包括DSP 和系统接口软件等。
比如Virata公司购买了LSI Logic公司的ZSP400处理器内核使用许可证,将其与系统软件如USB、10BASET、以太网、UART、GPIO、HDLC等一起集成在芯片上,应用在xDSL 上,得到了很好的经济效益。
因此,SOC芯片近几年销售很好,由1998年的1.6亿片猛增至1999年的3.45亿片。
1999年,约39%的SOC产品应用于通讯系统。
毋庸置疑,SOC将成为市场中越来越耀眼的明星。
(5)DSP 和FPGA的融合现场编程门阵列器件和DSP集成在一块芯片上,可实现宽带信号处理,大大提高信号处理速度。
据报道,Xilinx 公司的Virtex-II FPGA对快速傅立叶变换(FFT)的处理可提高30倍以上。
它的芯片中有自由的FPGA可供编程。
Xilinx公司开发出一种称作Turbo卷积编译码器的高性能内核。
设计者可以在FPGA中集成一个或多个Turbo内核,它支持多路大数据流,以满足第三代(3G)WCDMA无线基站和手机的需要,同时大大节省开发时间,使功能的增加或性能的改善非常容易。
因此在无线通信、多媒体等领域将有广泛应用。
(6)努力向系统级集成DSP迈进,将几个DSP芯核、MPU芯核、专用处理单元、外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。
(7)DSP的内核结构进一步改善。
多通道结构和单指令多重数据、超长指令字结构、超标量结构、超流水结构、多处理、多线程及可并行扩展的哈佛结构在新的高性能处理器中将占据主导地位。
(8)追求更高的运算速度和进一步降低功耗和几何尺寸。
(9)定点DSP是主流。
虽然浮点DSP的运算精度更高,动态范围更大,但定点DSP器件的成本较低,对存储器的要求也较低,而且耗电较省。
因此,定点运算的可编程DSP器件仍是市场上的主流产品。
据统计,目前销售的DSP器件中的80%以上属于16位定点可编程DSP器件,预计今后的比重将逐渐增大。
(10)与可编程器件结合。
与常规DSP器件相比,FPGA器件配合传统的DSP 器件可以处理更多信道,可在基站中用来实现高速实时处理功能,满足无线通信、多媒体等领域多功能和高性能的要求。
(11)向着集成DSP方向发展。
目前的DSP多数基于RISC(精简指令集)结构,这种结构的优点是尺寸小、功耗低、性能高。
现在各DSP厂纷纷采用新工艺,将几个DSP核、MPU核、专用处理单元、外围电路单元和存储单元集成在一个芯片上,成为DSP系统级集成电路。
(12)内核结构进一步改善。
多通道结构和单指令多重数据(SIMD)、超长指令字结构(VLIM)、超标量结构、超流水结构、多处理、多线程及可并行扩展的超级哈佛结构在高性能处理器将占据主导地位。
(13)进一步降低功耗和几何尺寸。
DSP的应用范围已经扩大到人们工作生活的各个领域,特别是便携式手持产品对于低功耗和尺寸的要求很高,所以DSP有待于进一步降低功耗。
随着CMOS的发展,提高DSP的运算速度和降低功耗尺寸是完全可能的。
(14)与可编程器件结合。
DSP在许多新的领域的应用要求它借助PLD或FPGA 来满足日益增长的处理要求。
与常规DSP器件相比,FPGA器件配合传统DSP 器件可以处理更多的信道,来满足无线通信、多媒体等领域的多功能和高性能的需要。