第十一章氧化还原反应
§本章摘要§1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对
E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源
化学电源
5.分解电压和超电压
分解电压和超电压
6.和电极电势有关的图示
电势- pH 图元素电势图自由能- 氧化数图
1
4
1 的
(1)
片上,进入溶随着上述过程的进行,左池中过剩,显正电性,阻
-+ 2 e 过剩,
阻碍电子从左向右移动,阻碍反应+ 2 e - Cu
不能持续
(2)
的溶液中,构成锌电极。
这
接触时,有两种过程可能发生:
Zn ----+ 2 e
+ 2 e --- Zn
- 电极来说,一般认为是锌片上留下负电荷而进入溶液。
和
Zn - 电极的电极电势。
溶液均处于标准态时,这个
表
表示。
电极电势
至此,我们定义了电极电势和,电池的电和电池的电动势可以测得,这将在物理
值的测定中仍有一些值必须组成一个电路,
值的参比电极。
测出由待测电极和参比电极组成的原电池的电动势E,
值,就可以计算出待测电极的电极电
(1 )
1.013Pa
原电池的电动势
表示电极中极板与溶液之间的
动势为电池的标准电动势,
大的电极为正极,故电
所以,电池反应
] = 1。
[ KCl ] = 1。
其
而求得。
, 离子共存的溶液中,
物质。
如,
值增大的顺序从上到下排列。
-即得,正极的电极反应减去负极的电极反应即原电池的电池反应。
在电池反应中,正极的
反应减去负极的电极反应即原电池的电池反应:
正极的氧化型 是氧化剂,它被还原成其还原型
其氧化型。
值越大表示氧化型物质越容易被还原。
这种电极电势被称为‘还原电势’
第十一章 氧化还原反应
§本章摘要§ 1.原电池
原电池 电极电势和电动势 2.氧化还原反应方程式的配平
电极反应式的配平 氧化还原方程式的配平 3.电池反应的热力学 电动势
和电池反应的关系 电动势和电池反应的关系
浓度对
E 和
的影响 (Nernst 方程) 水溶液中离子的热力学函数
4.化学电源 化学电源
5.分解电压和超电压 分解电压和超电压
6.和电极电势有关的图示
电势 - pH 图 元素电势图 自由能 - 氧化数图
以电对为例,配平其电极
OH, 等;而在碱介质中则不应出现酸性物质,如
, 等。
根据电对
介质条件。
第十一章氧化还原反应
§本章摘要§1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对
E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源
化学电源
5.分解电压和超电压
分解电压和超电压
6.和电极电势有关的图示
电势- pH 图元素电势图自由能- 氧化数图
电动势和电池反应的的关系
化学反应在烧杯中进行时,虽有电子转移,但不产生电流,属于恒温恒压无非体积功的过程。
其自发进行的判据是rG < 0
- rG > W
时,转移的电子为
-rG = W rG = -nEF
, z 为一无单位的纯数,公式的单位统一于
从公式rG = -zEF 可见,rG < 0 ,而公式则变成
的关系,相当于
和
的关系,关于这一点后面还要详细地讨
和电池反应的的关系 求得氧化还原反应的平衡常数,例 1求反应298 。
池,求出,再求出。
例 即
= 0.2 V 就可以达到
原电池,以求其。
和的影响
电对的半
反应,
原型
氧化型
其电子转移数为
= 0 V 保持不变,1HAc , 的值。
要大;
减小,比
要小。
所以电动势可以由下式算出
因为正极和负极都是氢电极,所以
响
和
值
1
,
相当于已知电极。
和= 1.0
决定的。
值变得越小;
最后,要知道若还原型生成沉淀,值将变大。
将变化后的浓度代入电极电势的可通过计算得到变化后的 值。
1
,而且将这个标准态看成是
] = 1 ,求出上式中的1和Ka = 5.1
则变小;
变大。
1的
第十一章氧化还原反应
§本章摘要§1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对
E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源
化学电源
5.分解电压和超电压
分解电压和超电压
6.和电极电势有关的图示
电势- pH 图元素电势图自由能-
氧化数图
应。
燃料电池是否成功的关键在于选择适当的电
极材料和催化剂,
第十一章氧化还原反应
§本章摘要§1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对
E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源
化学电源
5.分解电压和超电压
分解电压和超电压
6.和电极电势有关的图示
电势- pH 图元素电势图自由能- 氧化数图
= - 2.37 V
值过于小,
第十一章氧化还原反应
§本章摘要§
1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对
E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源
化学电源
5.分解电压和超电压
分解电压和超电压
6.和电极电势有关的图示
电势- pH 图元素电势图自由能- 氧化数图
值要受值
的
值
值,= 0.54 V
值与素的化合价为 左边加 这个电极反应就是氢电极的电极反应 = 0 V 当程可表示为= 1.23 V ( pH = 0 ,
= 1.23 ) ,( pH = 14 ,
2
第十一章氧化还原反应
§本章摘要§1.原电池
原电池电极电势和电动势
2.氧化还原反应方程式的配平
电极反应式的配平氧化还原方程式的配平
3.电池反应的热力学
电动势和电池反应的关系电动势和电池反应的关系浓度对E 和的影响(Nernst 方程)水溶液中离子的热力学函数
4.化学电源 化学电源
5.分解电压和超电压 分解电压和超电压
6.和电极电势有关的图示
电势 - pH 图 元素电势图 自由能 - 氧化数图
值。
便得到该件作图,横线上的
值分别表示为
]=1
时,高碘酸考察氯元素的图的一部分:它意味着因,
形式为。
2
1
(右)< (左)
化反应)生成
考察碘的元素电势图
312
G
有关系式对于若干相
,也可以
i
和i
未知的i
素作图。
横坐标:各种氧化数;纵坐标:自由能。
应式和它的电极电势;再利用公式
求出各电对或者说各个电极反应的值,即可做出图
为:
斜率的分子为:
;-。
结
式:得
电势成正比关系。
所以,
可以看出,连线
的氧化型
这相当于在下面的元素电势图中。