风力发电引起的电压波动和闪变孙涛1,王伟胜1,戴慧珠1,杨以涵2(1.中国电力科学研究院,北京 100085;2.华北电力大学电力工程系,北京102206)摘要:并网风电机组在持续运行和切换操作过程中都会产生电压波动和闪变,对当地电网的电能质量有不良影响。
从并网风电机组输出的功率波动出发,分析了风力发电引起电压波动和闪变的主要原因。
介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21,给出了风电机组在持续运行与切换操作期间引起的闪变值和相对电压变动的计算公式。
然后综述了有关风力发电引起的电压波动和闪变的计算方法和影响因素等方面的研究成果,最后展望了未来的研究方向和研究重点。
关键词:风力发电;电能质量;电压波动;闪变1 引言随着越来越多的风电机组并网运行,风力发电对电网电能质量的影响引起了广泛关注。
风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。
电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。
电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等[1,2]。
电压波动为一系列电压变动或工频电压包络线的周期性变化。
闪变是人对灯光照度波动的主观视感。
人对照度波动的最大觉察频率范围为0.05~35Hz,其中闪变敏感的频率范围约为6~12Hz[1]。
衡量闪变的指标有短时间闪变值P st和长时间闪变值P l t。
短时间闪变值是衡量短时间(若干分钟)内闪变强弱的一个统计量值。
短时间闪变值的计算不仅要考虑电压波动造成的白炽灯照度变化,还要考虑到人的眼和脑对白炽灯照度波动的视感。
长时间闪变值由短时间闪变值推出,反映长时间(若干小时)闪变强弱的量值。
本文从并网风电机组输出的功率波动着手,分析了风力发电引起电压波动和闪变的主要原因,并介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21[3],总结了风力发电引起的电压波动和闪变的计算方法和影响因素,最后对未来的研究方向和研究重点进行了展望。
2机理分析风力发电引起电压波动和闪变的根本原因是并网风电机组输出功率的波动,下面将分析并网风电机组输出功率波动引起电压波动和闪变的机理[4]。
图1为风电机组并网示意图,其中Ė为风电机组出口电压相量,为电网电压相量,R1、X1分别为线路电阻和电抗,分别为线路上流动的有功电流和无功电流相量。
一般而言,有功电流要远大于无功电流。
由图1(b)可见,是造成电压降落的主要原因,垂直,造成的电压降落可以忽略不计。
由图1(c)可见,是造成电压降落的主要原因,垂直,造成的电压降落可以忽略不计。
所以有功电流和无功电流都会造成明显的电压降落,分别为和。
当并网风电机组的输出功率波动时,有功电流和无功电流随之变化,从而引起电网电压波动和闪变。
影响风电机组输出功率的因素很多,其中风速的自然变化是主要因素。
风电机组的机械功率可以表示为为功率系数,式中P为功率;ρ为空气密度;A为叶片扫风面积;v为风速;CP表示风电机组利用风能的效率,它是叶尖速比λ和桨距角β的函数,叶尖速比λ定义为式中ω为叶轮转速,R为叶轮半径。
由式(1)可见,空气密度ρ、叶轮转速ω、桨距角β和风速v的变化都将对风电机组的输出功率产生影响。
风速v的变化是由自然条件决定的,随机性比较强,且功率与风速的三次方近似呈正比,因此当风速快速变化时,并网风电机组的输出功率将随之快速变化。
叶轮转速ω和桨距角β的变化由风电机组类型和控制系统决定,先进的控制系统能够减小风电机组输出功率的波动。
此外,在并网风电机组持续运行过程中,由于受塔影效应、偏航误差和风剪切等因素的影响,风电机组在叶轮旋转一周的过程中产生的转矩不稳定,而转矩波动也将造成风电机组输出功率的波动,并且这些波动随湍流强度的增加而增加。
常见的转矩和输出功率的波动频率与叶片经过塔筒的频率相同。
对于三叶片风电机组而言,波动频度为3P(P为叶轮旋转频率)时,最大波动幅度约为转矩平均值的20% [5]。
塔影效应是指风电机组塔筒对空气流动的阻碍作用,当叶片经过塔筒时,产生的转矩减小。
远离塔筒时风速是恒定的,接近塔筒时风速开始增加,而更接近时风速开始下降。
塔影效应对下风向类型风电机组的影响最严重。
塔影效应可以用频率为3P倍数的傅立叶级数表示[6]。
由于叶片扫风面积内垂直风速梯度的存在,风剪切同样会引起转矩波动。
风剪切可用以风电机组轮毂为极点的极坐标下的二项式级数表示[6-8]。
从风轮的角度看,风廓线是一个周期性变化的方程,变化频率为3P的倍数。
除了塔影效应和风剪切引起的输出功率波动外,在风电机组输出功率中还可检测到频率为p的波动分量,其出现的主要原因可能是叶片结构或重力不完全对称。
此外,频率为塔筒谐振频率的波动分量也比较明显,它可能是由于轮毂的横向摆动引起的。
并网风电机组不仅在持续运行过程中产生电压波动和闪变,而且在启动、停止和发电机切换过程中也会产生电压波动和闪变。
典型的切换操作包括风电机组启动、停止和发电机切换,其中发电机切换仅适用于多台发电机或多绕组发电机的风电机组。
这些切换操作引起功率波动,并进一步引起风电机组端点及其他相邻节点的电压波动和闪变。
3 国际电工标准IEC 61400-213.1 风电机组输出电压国际电工标准IEC 61400-21是关于并网风电机组电能质量测量与评估的标准,旨在为并网风电机组电能质量测量与评估提供一个统一的方法,以确保其一致性和正确性。
IEC 61400-21提供的测量过程适用于任何与电网三相连接的风电机组,且风电机组的额定容量可以是任意的。
IEC 61400-21的主要内容包括:描述并网风电机组电能质量特征参数的定义或说明;电能质量特征参数的测量过程;这些电能质量特征参数是否满足电网要求的评估方法。
IEC 61400-21定义的并网风电机组电能质量特征参数包括风电机组额定参数、最大允许功率、最大测量功率、无功功率、电压波动和谐波等,其中电压波动测量和评估是IEC 61400-21的重点。
考虑到电网中其他波动负荷可能在风电机组公共连接点引起明显的电压波动,且风电机组引起的电压波动依赖于电网特性。
因此,为了在风电机组公共连接点获得不受电网条件影响的测试结果,IEC 61400-21采用了一个无其他电压波源的虚拟电网来模拟风电机组输出的电压,虚拟电网的单相电路如图2所示。
图2中的虚拟电网由一个理想的相对地电压源u0(t)、线路电阻Rfic和电感Lfic 组成,u(t)的幅值等于电网相电压的标称值,相角等于风电机组输出电压基波分量的相角,线路阻抗角等于电网阻抗角,im(t)为风电机组输出电流的测量值,ufic (t)为计算出的风电机组的瞬时电压。
ufic(t)可以表示为3.2 持续运行过程评估持续运行过程中的电压波动时必须涵盖不同的电网阻抗角φk 和风速分布情况,其中风速分布按不同年平均风速v a 的瑞利分布[9]来考虑。
以不同情况下的电压、电流测量数据作为虚拟电网的输入量,计算出风电机组的输出电压u fic (t)。
根据国际电工标准IEC 61000-4-15[10]提供的闪变值算法,由u fic (t)计算短时间闪变值P st,fic 。
然后,由下式计算闪变系数c(φk )组的额定视在功率。
根据服从瑞利分布的风速和计算得出的闪变系数,得到闪变系数的累积概率分布函数为测量的最终结果。
为了评估一台风电机组引起的电压波动,可以根据下式计算短时间闪变值P st 和长时间闪变值P lt式中 ci(φk ,v a )为单台风电机组的闪变系数;S n,i 为单台风电机组的额定视在功率;N wt 为连接到公共连接点的风电机组的数目。
3.3 切换操作过程评估切换操作过程中的电压波动必须涵盖不同的电网阻抗角φk 情况,以及下面3种切换操作过程:(1)风电机组在切入风速下启动;(2)风电机组在额定风速下启动;(3)发电机在最差条件下切换(只适用于多台发电机或多绕组发电机的风电机组),最差条件是指闪变阶跃系数k f (φk )最高和电压变化系数k u (φk )最高的情况。
由虚拟电网仿真所得的风电机组输出电压u fic (t)计算出短时间闪变值P st,fic 之后,可根据下式分别求得闪变阶跃系数k f (φk )和电压变化系数k u (φk )式中 T P 为测量持续时间;U fic,max 和U fic,min 分别为切换操作过程中u fic(t)有效值的最大值与最小值;Un为额定线电压。
对计算所得的kf (φk)和ku(φk)分别取平均值,即为测量过程的最终结果。
为了评估单台风电机组引起的电压波动,可以根据下式计算短时间闪变值P st 和长时间闪变值Plt式中N10为10min内切换操作次数最大值;N120为2h内切换操作次数最大值。
如果多台风电机组连在公共连接点,则可按下式估计它们在切换操作中引起的闪变对于多台风电机组连在公共连接点的情况,由于两台风电机组不可能在同一时间完成切换操作,因此没有必要考虑多台风电机组引起的相对电压变动问题。
短时间、长时间闪变值和相对电压变化值不能超过电网允许的最大限值。
国际电工标准IEC 61000-3-7[11]提供了估算中高压电网所允许的闪变和电压变化最大限值的方法。
4 研究成果4.1 特征参数和计算方法从20世纪80年代起,世界上相关领域内的学者们就开始研究风力发电引起的电压波动和闪变问题,在实地测量、实验和建模仿真等研究领域取得了许多研究成果。
在国际电工标准IEC 61400-21出版以前,世界上没有一套公认的描述并网风电机组电能质量的特征参数及其相应的计算方法。
因此,许多研究工作围绕此点展开,如丹麦Risø国家实验室进行的电压波动和闪变的计算方法研究[12]等。
国际电工标准IEC 61400-21提供了一套完整的描述并网风电机组电能质量的特征参数及其相应的计算方法,填补了这个空白。
IEC 61400-21采用国际电工标准IEC 61000-4-15提供的闪变值仿真算法计算短时间闪变值,其原理框图如图3所示。
图3中,IEC闪变仪将输入的被测电压u(t)适配成适合仪器的电压数值,并产生标准的调制波电压供仪器自检用;经过灯-眼-脑环节的模拟;再对模拟环节输出的瞬时闪变视感度S(t)恒速采样,得出累积概率函数,最后计算出短时。
间闪变值Pst国际电工标准IEC 61000-4-15提供的闪变仪算法是时域算法,它有测量数据多、测量过程长和计算速度慢等缺点,因此文献[13]、[14]提出了闪变仪的频域算法。
频域算法的优点十分明显,如测量时间短、计算速度快和可以区分不同频率对闪变的影响等。