一次性饭盒饭盒注塑模设计1 塑料制品的工艺性分析如图1-1为一次性饭盒的整体造型图:图1-1一次性饭盒整体图1.1 塑件形状分析如图1所示为一次性饭盒模型,此塑料制品的形状比较简单,整体带四个凹槽,型腔可以和四周的槽做成一个整体式的型腔,不用侧向抽芯,给模具带来了方便. 饭盒的注塑材料首先选用ABS,饭盒绝大部分的决定了饭盒的重心的位置的所在。
所以我们必须很好多处理制件壁厚的均匀,譬如在注塑成型过程中因为壁厚的不均匀造成了收缩率的不一致,这样就只能通过有效的控制模具温度来调节收缩率。
由于饭盒的主体要求牢固实用,生产量较大.主要是它螺钉孔的壁厚相对壁厚有一定的差距,势必会在注塑的时候到来很大的牛顿减力,造成塑件填充不满的缺陷,可以考虑采用一模四腔,利用侧浇口进胶.但应用了Pro/E的塑料顾问对其进行模仿CAE的注塑之后,发现会给饭盒的表面带来更多的熔接痕和气孔。
也可以利用模具的可靠的精度来定位,但是这样的话成本太高,而且易造成模具损坏。
因为考虑到凹凸模形状的简单,利用整体形式方便脱模,减少了对侧向的抽芯机构.解决这些问题,大大增加了效率。
1.2 材料分析饭盒所用的原料为ABS。
丙烯腈-丁二烯-苯乙烯共聚物ABS树脂微黄色或白色不透明,是丙烯腈-丁二烯-苯乙烯共聚物。
丙烯腈使聚合物耐油,耐热,耐化学腐蚀,丁二烯使聚合物具有优越的柔性,韧性;苯乙烯赋予聚合物良好的刚性和加工流动性。
因此ABS树脂具有突出的力学性能和良好的综合性能。
ABS无毒、无味,呈微黄色,成型的塑料件有较好的光泽。
密度为1.02-1.05g/cm3.ABS有极好的抗冲击强度,且在低温下也不迅速下降。
水、无机碱、酸类对ABS几乎无影响;ABS塑料表面受冰醋酸、植物油等化学药品的侵蚀会引起应力开裂。
ABS有一定的硬度和尺寸稳定性,易于成型加工。
其特点是耐热性不高。
连续工作温度为70℃左右,热变形温度约为93℃左右。
耐气候性差、在紫外线作用下易变形发脆。
成型特点:ABS在升温时粘度增高,所以成型压力较高,ABS吸湿强、成型加工前应进行干燥处理;易产生熔接痕,模具设计时应注意尽量减少浇注系统对料流的阻力;在正常的成型条件、壁厚、熔料温度及收缩率影响极小。
要求塑件精度高时,模具温度可控制在50-60℃。
要求塑件光泽和耐热性时,应控制在60-80℃。
ABS的成型特性与工艺参数如表1.1所示:表1-1 ABS塑料主要的性能指标项目/单位值密度(Kg.dm-3) 1.13——1.14收缩率% 0.3~0.8熔点℃130~160热变形温度45N/cm 65~98弯曲强度Mpa 80拉伸强度MPa 35~49拉伸弹性模量GPa 1.8弯曲弹性模量Gpa 1.4压缩强度Mpa 18~39缺口冲击强度kJ/㎡11~20硬度HR R62~86体积电阻系数Ωcm 1013击穿电压Kv.mm-1 15介电常数60Hz3.72 注射机的初步拟定2.1 选择注射机根据工厂现有的条件,并考虑到该制品的结构特征,这里初步选择HS150A型注射机,该注射机的技术参数如下表2-1所示。
3 模具结构方案的确定3.1 分型面的确定分型面的选择原则:(1)分型面应选择在塑件外形最大轮廓处。
(2)确定有利于的留模方式,便于塑件顺利脱模。
(3)保证塑件的精度要求。
(4)满足塑件的外观质量要求。
(5)便于模具加工制造。
(6)对成型面积的影响。
(7)有利于提高排气效果。
(8)对侧向抽芯的影响。
综合考虑以上分型面的选择原则,结合制品的结构形状,该塑料饭盒的分型面设计如图3-1-1所示。
表2-1 HS150A注射机主要技术参数表机型MODEL 单位HS150A注射重量(按PS计算)OZ 11Shot Weight ofg 311Injection(ps)螺杆直径mm 45注射体积CM3 325注射行程mm 210注射压力kg/c㎡2300螺杆转速R.P.M. 10-190锁模力TON 150四柱内空间mm 410X410开模行程mm 360模板最大开距mm 820容模厚度mm 203-460顶出力TON 4.5顶出行程mm 90油缸容量Litre 340电热功率KW 10.8电马达功率KW 15机身重量TON 5付船尺码m 4.8X1.3X23.2 型腔的布局方案的比较与确定型腔的布置方案常用的有两种,第一种方案为平衡式,该方案特点是从主流道到各型腔浇口的分流道的长度,截面形状尺寸均对应相同,可实现均衡进料和同时充满型腔的目的。
第二种方案为非平衡式,该方案特点是从主流道到各型腔浇口的分流长度不相等,因而不利于平均衡进料,但可以缩短流道的总长度,为达到同时充满型腔的目的,各浇口的截面尺寸制作不相同。
该模具布置为一模四腔,平衡式布置如图3-2-1所示:图3-2-1平衡式布置非平衡式布置如图3-2-2所示:图3-2-2非平衡式方案该模具选择图3-2-1所示平衡式方案。
3.3 浇注系统形式和浇口的设计普通浇注系统由主流道、分流道、浇口和冷料井组成。
在设计浇注系统之前必须确定塑件成型位置,可以才用一模两腔,浇注系统的设计是注塑模具设计的一个重要的环节,它对注塑成型周期和塑件质量(如外观,物理性能,尺寸精度)都有直接的影响,设计时要遵循如下基本原则:(1)了解塑料的成型性能和塑料熔体的流动性。
(2)采用尽量短的流程,以减少热量与压力损失。
(3)浇注系统设计应有利于良好的排气。
(4)防止型芯变形和嵌件位移。
(5)便于修整浇口以保证塑件外观质量。
(6)浇注系统应结合型腔布局同时考虑。
(7)流动距离比和流动面积比的校核。
3.3.1 主流道的设计主流道是浇注系统中从注射机喷嘴与模具相接触的部位开始到分流道为止的塑料熔体的流动通道。
主流道部分在成型过程中,其小端入口处与注射机喷嘴有一定温度、压力的塑料熔体要冷热交替地反复接触,属易损件,对材料的要求较高,因而模具的主流道部分常设计成可拆卸更换的主流道衬套式(俗称浇口套)以便有效地选用优质钢材单独进行加工和热处理。
一般采用碳素工具钢如T8A、T10A等,热处理要求淬火53-57HRC。
浇口套应设置在模具的对称中心位置上,并尽可能保证与相联接的注射机喷嘴为同一轴心线。
主流道的设计要点如下:(1)截面形状为圆形,整体形状为圆锥形。
(2)锥度a=2°--6°一般取(2°--4°)。
(3)小端孔径=喷嘴孔径+(0.5-1)mm。
(4)球面半径=喷嘴球面半径+(1-2)mm。
SR=Sr+(1-2)mm。
(5)主流道长度L尽量短。
(6)内表面粗糙度小于等于0.8微米。
(7)主流道末端与分流道相接处采用圆弧过渡r=1-3 mm。
(8)球面配合高度H=3-5 mm。
该模具的主流道设计如下图3-3-1所示:图3-3-1 浇口套结构图3.3.2 分流道的设计分流道是指主流道末端与浇口之间这一段塑料熔体的流动通道。
一般开在分型面上,起分流和转向的作用。
分流道截面的形状可以是圆形、半圆形、矩形、梯形和U 形等,圆形和正方形截面流道的比面积最小(流道表面积于体积之比值称为比表面积),塑料熔体的温度下降小,阻力小,流道的效率最高。
但加工困难,而且正方形截面不易脱模,所以在实际生产中较常用的截面形状为梯形、半圆形及U形。
分流道设计要点:(1)在保证足够的注塑压力使塑料熔体能顺利的充满型腔的前提下,分流道截面积与长度尽量取小值,分流道转折处应以圆弧过度。
(2)分流道较长时,在分流道的末端应开设冷料井。
对于此模来说在分流道上不须开设冷料井。
(3)分流道的位置可单独开设在定模板上或动模板上,也可以同时开设在动,定模板上,合模后形成分流道截面形状。
(4).分流道与浇口连接处应加工成斜面,并用圆弧过度。
分流道的长度分流道的长度取决于模具型腔的总体布置方案和浇口位置,从在输送熔料时减少压力损失,热量损失和减少浇道凝料的要求出发,应力求缩短。
分流道的断面分流道的断面尺寸应根据塑件的成形的体积,塑件的壁厚,塑件的形状和所用塑料的工艺性能,注射速率和分流道长度等因素来确定。
因ABS的推荐断面直径为4.5~9.5(查表5-3),部分塑件常用断面尺寸推荐范围。
分流道要减小压力损失,希望流道的截面积大,表面积小,以减小传热损失,同时因考虑加工的方便性。
分流道应考虑出料的流畅性和制造方便,熔融料的热量损失小,流动阻力小,比表面和小等问题,由于采用的是潜伏式二级分流道对热损失及流动提出了较高的要求,采用圆形的份流道,为了保证外形无浇口痕,浇口前后两端形成较大的压力差,增加流速,得到外形清晰的制件,提高熔体冷凝速度,保证熔融的塑料不回流,同时可隔断注射压力对型腔内塑料的后续作用,冷却后快速切除。
同时它的效果与S浇注系统有同样的效果,有利于补塑。
该模具设计分流道方案如图3.3.2所示:图3-3-2 分流道的设计方案3.3.3 浇口的设计浇口亦称进料口,是连接分流道与型腔之间的一段细短流道(除直接浇口外),它是浇注系统的关键部分。
其主要作用是:(1)型腔充满后,熔体在浇口处首先凝结,防止其倒流。
(2)易于在浇口切除浇注系统的凝料。
浇口截面积约为分流道截面积的0.03~0.09,浇口的长度约为0.5mm~2mm,取其下限值,然后在试模是逐步纠正。
常用浇口形式主要分为11种形式:(1)直接浇口(2)侧浇口(3)扇形浇口(4)平缝浇口(5)环形浇口(6)盘形浇口(7)轮辐浇口(8)爪形浇口(9)潜伏浇口(10)护耳浇口(11)点浇口该制品选择的是侧浇口。
当塑料熔体通过浇口时,剪切速率增高,同时熔体的内磨檫加剧,使料流的温度升高,粘度降低,提高了流动性能,有利于充型。
但浇口尺寸过小会使压力损失增大,凝料加快,补缩困难,甚至形成喷射现象,影响塑件质量。
浇口位置的选择原则:尽量缩短流动距离。
(2)浇口应开设在塑件壁最厚处。
(3)必须尽量减少或避免熔接痕。
(4)应有利于型腔中气体的排除。
(5)考虑分子定向的影响。
(6)避免产生喷射和蠕动。
(7)不在承受弯曲或冲击载荷的部位设置浇口。
(8)浇口位置的选择应注意塑件外观质量。
3.3.4 冷料穴设计冷料穴位于主流道正对面的动模板上,或处于分流道末端,其作用是接受料流前锋的“冷料”,防止“冷料”进入型腔而影响塑件质量,开模时又能将主流道的凝料拉出。
冷料穴的直径宜大于大端直径,长度约为主流道大端直径。
基于本次设计的模具,可采用底部带有拉料杆的冷料穴,这类冷料井穴的底部由一个拉料杆构成。
拉料杆装于型芯固定板上,因此它不能随脱模机构运动。
利用球头形的拉料杆配合冷料穴。
该冷料穴如附录三模具总装图所示。
3.4 成型零部件系统的设计此成型零部件的作用是决定塑件的内外表的形状,尺寸和尺寸精度。
其凹模是成型塑件外表面的主要零件;凸模和型芯均是成型塑件内表面的零件,按其结构不同可分为整体式和组合式两类。