其中晶态半导体又可以分为单晶半导体和多晶半导体。
上述材料中,锗(Ge)、硅(Si)、砷化镓(GaAs)都是单晶,是由均一的晶粒有序堆积组成;而多晶则是由很多小晶粒杂乱地堆积而成。
对于非晶态半导体,有非晶态硅、非晶态锗等,它们没有规则的外形,也没有固定熔点,内部结构不存在长程有序,只是在若干原子间距内的较小范围内存在结构上的有序排列,称作短程有序。
另外,在实际应用中,根据半导体材料中是否含有杂质,又可以将半导体材料分为本征半导体和杂质半导体。
在下面的章节中将会介绍,杂质的存在将对材料的性能产生很大的影响。
二. 半导体材料的结构及其性能
1.几种半导体材料的结构
1.1金刚石结构型材料
Si、Ge等Ⅳ族元素有4个未配对的价电子,每个原子只能与周围4个原子共价键合,使每个原子的最外层都成为8个电子的闭合壳层,因此共价晶体的配位数(即晶体中一个原子最近邻的原子数)只能是 4。
方向性是指原子间形成共价键时,电子云的重叠在空间一定方向上具有最高密度,这个方向就是共价键方向。
共价键方向是四面体对称的,即共价键是从正四面体中心原子出发指向它的四个顶角原子,共价键之间的夹角为109°28′,这种正四面体称为共价四面体,见图 1.2。
图中原子间的二条连线表示共有一对价电子,二条线的方向表示共价键方向。
共价四面体中如果把原子粗略看成圆球并且最近邻的原子彼此相切,圆球半径就称为共价四面体半径。
单纯依靠图1.2那样的一个四面体还不能表示出各个四面体之间的相互关系,为充分展示共价晶体的结构特点,图1.3(a)画出了由四个共价四面体所组成的一个Si、Ge晶体结构的晶胞,统称为金刚石结构晶胞,整个Si、Ge晶体就是由这样的晶胞周期性重复排列而成。
它是一个正立方体,立方体的八个顶角和六个面心各有一个原子,内部四条空间对角线上距顶角原子1/4对角线长度处各有一个原子,金刚石结构晶胞中共有8个原子。
金刚石结构晶胞也可以看作是两个面心立方沿空间对角线相互平移 1/4 对角线长度套构而成的。
1.2闪锌矿结构
该类型材料主要是Ⅲ-Ⅴ族和Ⅱ-Ⅵ族二元化合物半导体,例如ZnS、ZnSe、GaAs、GaP。
GaAs晶体中每个Ga原子和As原子共有一对价电子,形成四个共价键,组成共价四面体。
图1.4 为GaAs 的晶胞,闪锌矿结构和金刚石结构的不同之处在于套构成晶胞的两个面心立方分别是由两种不同原子组成的。
在金刚石结构和闪锌矿结构中,正立方体晶胞的边长称为晶格常数,通常用a表示。
1.3纤锌矿型结构
该类型材料主要是Ⅱ-Ⅵ族二元化合物半导体,例如ZnS、ZnSe、CdS、CdSe。
1.4氯化钠型结构
该类型材料主要是IV-Ⅵ族二元化合物半导体,例如硫化铅、硒化铅、碲化铅等。
2.半导体中电子的状态与能带的形成
半导体中的电子能量状态和运动特点及其规律决定了半导体的性质容易受到外界温度、光照、电场、磁场和微量杂质含量的作用而发生变化。
半导体的一般能级机构如下:
由固体物理知识,我们知道:能带的宽窄由晶体的性质决定,
与晶体中含的原子数目无关,但每个能带中所含的能级数目与晶体中的原子数有关。
因此,对于每种半导体,其能带结构是不同的。
例如:
硅、锗、砷化镓的能带结构
3.本征半导体和杂质半导体
3.1本征半导体
纯净的、不含任何杂质和缺陷的半导体称为本征半导体。
一定温度下的本征半导体,共价键上的电子可以获得能量挣脱共价键的束缚从而脱离共价键,成为参与共有化运动的“自由”电子。
共价键上的电子脱离共价键的束缚所需要的最低能量就是禁带宽度。
将共价键上的电子激发成为准自由电子,也就是价带电子激发成为导带电子的过程,称为本征激发。
本征激发的一个重要特征是成对的产生导带电子和价带空穴。
本征半导体的导带电子参与导电,同时价带空穴也参与导电,存在着两种荷载电流的粒子,统称为载流子。
一定温度下,价带
Ⅳ族的Si或Ge中形成替位式杂质,用单位体积中的杂质原子数,也就是杂质浓度来定量描述杂质含量多少,杂质浓度的单位为1/cm3。
Si半导体器件和集成电路生产中,最常用的杂质是替位式Ⅲ族和Ⅴ族元素。
图1.27所示的Si中掺入V族元素磷(P)时,由于Si中每一个Si原子的最近邻有四个Si原子,当五个价电子的磷原子取代Si原子而位于格点上时,磷原子五个价电子中的四个与周围的四个Si原子组成四个共价键,还多出一个价电子,磷原子所在处也多余一个称为正电中心磷离子的正电荷。
多余的这个电子虽然不受共价键的束缚,但被正电中心磷离子所吸引只能在其周围运动,不过这种吸引要远弱于共价键的束缚,只需要很小的能量就可以使其挣脱束缚(称为电离),形成能在整个晶体中“自由”运动的导电电子。
而正电中心磷离子被晶格所束缚,不能运动。
由于以磷为代表的Ⅴ族元素在Si中能够施放导电电子,称 V 族元素为施主杂质或n型杂质。
电子脱离施主杂质的束缚成为导电电子的过程称为施主电离,所需要的能量称为施主杂质电离能。
其大小与半导体材料和杂质种类有关,但远小于Si和Ge的禁带
宽度施主杂质未电离时是中性的,称为束缚态或中性态,电离后称为施主离化态。
Si中掺入施主杂质后,通过杂质电离增加了导电电子数量从而增强了半导体的导电能力,把主要依靠电子导电的半导体称为n型半导体。
n型半导体中电子称为多数载流子,简称多子;而空穴称为少数载流子,简称少子。
图1.27中Si掺Ⅲ族元素硼(B)时,硼只有三个价电子,为与周围四个Si原子形成四个共价键,必须从附近的Si原子共价键中夺取一个电子,这样硼原子就多出一个电子,形成负电中心硼离子,同时在Si的共价键中产生了一个空穴,这个被负电中心硼离子依靠静电引力束缚的空穴还不是自由的,不能参加导电,但这种束缚作用同样很弱,很小的能量就使其成为可以“自由”运动的导电空穴,而负电中心硼离子被晶格所束缚,不能运动。
由于以硼原子为代表的Ⅲ族元素在Si、Ge中能够接受电子而产生导电空穴,称Ⅲ族元素为受主杂质或p型杂质。
空穴挣脱受主杂质束缚的过程称为受主电离。
而所需要的能量称为受主杂质电离能。
不同半导体和不同受主杂质其也不相同,但通常远小于Si 和Ge禁带宽度。
受主杂质未电离时是中性的,称为束缚态或中性态,电离后成为负电中心,称为受主离化态。
Si中掺入受主杂质后,受主电离增加了导电空穴,增强了半导体导电能力,把主要依靠空穴导电的半导体称作p型半导体。
p型半导体中空穴是多子,电子是少子。
表1.2列出了Si、Ge晶体中Ⅲ、Ⅴ族杂质的电离能。
掺入施主杂质的半导体,施主能级上的电子获得能量后由束缚态跃迁到导带成为导电电子,因此施主能级位于比导带底低的禁带中,且空穴由于带正电,能带图中能量自上向下是增大的。
对于掺入Ⅲ族元素的半导体,被受主杂质束缚的空穴能量状态(称为受主能级)位于比价带顶低的禁带中,当受主能级上的空穴得到能量后,就从受主的束缚态跃迁到价带成为导电空穴。
N A- N D≈N A。
通过补偿以后半导体中的净杂质浓度称为有效杂质浓度。
如果N D>N A,称N D-N A为有效施主浓度;如果N D<N A,那么称N A - N D为有效受主浓度。
半导体器件和集成电路生产中就是利用杂质补偿作用,在n型
Si外延层上的特定区域掺入比原先n型外延层浓度更高的受主杂质,通过杂质补偿作用就形成了p型区,而在n型区与p型区的交界处就形成了pn结。
如果再次掺入比p型区浓度更高的施主杂质,在二次补偿区域内p型半导体就再次转化为n型,从而形成双极型晶体管的n-p-n结构,见图1.30。
很多情况下晶体管和集成电路生产中的掺杂过程实际上是杂质补偿过程。
杂质补偿过程中如果出现N D≈N A,称为高度补偿或过度补偿,这时施主和受主杂质都不能提供载流子,载流子基本源于本征激发。
高度补偿材料质量不佳,不宜用来制造器件和集成电路。