简单填料精馏塔设计设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比● 最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则min D ee ex y R y x -=-(1)设夹紧点在提馏段,其坐标为(xe,ye)min min 0(1)(1)e e Wy R D qF LV R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度 ● 确定操作回流比min(1.1~2.0)R R =2 全塔物料衡算与操作方程(1)全塔物料衡算F S D W +=+ (3)F D W Fx Dx Wx =+ (4) 其中 (1)(1)S V R D q F ==+-- (5)W L RD qF ==+(6) 联立式(3)、式(4)得: F WD Wx qx D Fx Rx -=+(7)(2) 操作方程 精馏段 111D n n x Ry x R R +=+++ 提馏段 1n n W W Wy x x S S+=- 3 计算精馏段、提馏段理论板数① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。
② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取4. 全塔组成分布、温度分布及精馏段、提馏段平均温度与组成精馏段平均温度 1()/2F t t t =+ 提馏段平均温度 ()/2F N t t t =+其中 1t ——塔顶第一板温度,F t ——加料板温度,B t ——塔釜温度5物性参数的计算① 塔顶条件下的物性参数(气相密度、液相密度、表面张力及粘度) ② 进料板组成与温度条件的物性参数 ③ 塔釜条件下的物性参数 ④ 精馏段平均物性参数 ⑤ 提馏段平均物性参数附:气相密度用理想气体状态方程计算 pMRTρ= 液相密度1ABLABw w ρρρ=+A w 、B w 为组分A 与B 的质量分数,A ρ、B ρ分别为组分A 与B 的液相密度,水的密度用插值法求,甲醇或丙酮的密度查有机液体相对密度共线图(陈敏恒,化工原理(上册):北京:化学工业出版社,2006)表面张力(含水溶液)1/41/41/4m SW W SO O σϕσϕσ=+/()W W W W W O O x V x V x V ϕ=+ /()O O O W WO Ox V x V x V ϕ=+ lg(/)qWO B ϕϕ=2/32/30.441(/)()O O W W V Q q T V qσσ=-lg(/)qSW SO B Q ϕϕ+=1SW SO ϕϕ+=醇类 q=碳原子数;酮类 q=碳原子数-1W σ、O σ分别为水与有机物的表面张力,V W 、V O 分别为纯水与纯有机物的摩尔体积(cm 3/mol)。
纯有机物的表面张力查有机液体的表面张力共线图。
粘度5 冷凝器和再沸器热负荷冷凝器的热负荷 ()C DV DL Q V I I =-再沸器的热负荷B C D W F Q Q DI WI FI =++-待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)、再沸器温度tw (与x W 对应的泡点温度)。
物性数据:① 各组分在平均温度下的液相热容、气相热容或汽化热。
② 各组分的热容方程常数如 23p c A BT CT DT =+++ ③ 由沃森公式计算汽化热 210.38211()1r V V r T H H T -∆=∆-6 填料塔的结构设计I. 塔径计算计算公式: D =① 塔填料选择须知:相对处理能力:拉西环<矩鞍<鲍尔环<阶梯环<环鞍(填料尺寸相同,压降相同)对于规整填料,分离能力:丝网类填料>板波纹类填料,板波纹填料较丝网类有较大的处理量和较小的压降。
250Y ——250指的是填料的比表面积,Y 指的是波纹倾角为45o ,X Y 指的是波纹倾角为30o填料选择的三步骤:选材质→选类型→选尺寸(径比应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。
)选尺寸说明:填料尺寸大,成本低,处理量大,但效率低。
一般大塔常使用50mm 的填料。
塔径/mm 填料尺寸/mm D<300 20~25 300<D<900 25~38D>90050~80② 计算方法泛点气速法 ----散堆填料(0.5~0.8) f u u =a. Eckert 关联图法20.50.2f u ()() Y=G G L V L LW X W g ρφϕρμρρ=由X 值和泛点压降线查取Y 值进而求得液泛气速 b. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L LL V LW A g W ρραμερρ=- 填料特性:比表面积、空隙率、泛点压降因子 ---规整填料a. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L LL V LW A g W ρραμερρ=- 250Y 金属板波纹填料:A=0.297,CY 型丝网填料:A=0.30 b. 泛点压降法Kister and Gill 等压降曲线(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265) 泛点压降与填料因子间的关系:0.7/40.9p Z Fp ∆= Pa/m; Fp —填料因子等压降曲线: 0.50.50.50.05p u ()() Y=() F ()0.277G G L V L L G W X W ρρμρρρρ=- 气相负荷因子法——用于规整填料塔的计算0.5[/()]S G L G C u ρρρ=-max 0.8 S S C C =0.5max =f() ( )G L S G LW C W ρψψρ=填料手册中给出Csmax 与ψ(流动参数)的关系图。
③ 校核---散装填料:a. 径比D/dp 为保证填料润湿均匀,应使径比在10以上,径比过小,液本沿填料下流时常会出现壁流现象。
拉西环:D/dp>20;鲍尔环:D/dp>10;鞍形填料:D/dp>15。
b. 泛点率u/uf ∈(0.5~0.8) 保证塔在操作中不发生液泛c .喷淋密度>最小喷淋密度 保证填料充分润湿。
若喷淋密度过小,可增加吸收剂用量,或采用液体再循环以加大液体流量,或在许可范围内减小塔径,或适当增加填料层高度予以补偿。
d. 每米填料层压降 为使填料塔性能良好的工况下操作,每米填料层的压降不能太大,一般正常压降/147~490 Pa p Z ∆=,真空操作下/78.45 Pa p Z ∆≤---规整填料 注意:计算出的塔径D 值,应按压力容器公称直径标准进行圆整,以符合设备的加工要求及设备定型,便于设备的设计加工。
根据国内压力容器公称直径标准(JB-1153-71),直径在1m 以下,间隔为100mm (必要时D 在700mm 以下可50mm 为间隔);直径在1m 以上,间隔为200mm (必要时D 在2m 以下可用100mm 为间隔)(李功祥,陈兰英.常用化工单元设备设计.广州:华南理工大学出版社.)④ 所需物性数据物性数据:气体混合物的密度、液体混合物的密度、液体混合物的粘度、表面张力 计算式:气体混合物 G p MRTρ=液体混合物:1iLiw ρρ=∑wi ——组分i 的质量分数互溶液体混合物的粘度:1/31/3m iix μμ=∑含水溶液的表面张力: 1/41/41m S W WS O Oσϕσϕσ=+ 式中:/ / SW SW W S SO SO O S x V V x V V ϕϕ== 计算精馏段塔径时物性数据的处理:a. 以上方程所用物性数据近似按塔顶第一板处理. 如 11G pM RT ρ=b. 以上方程中所用物性数据均取塔顶第一板与加料板物性数据的平均值 计算提馏段塔径时物性数据的处理:a. 以上方程所用物性数据近似按加料板处理.b. 以上方程中所用物性数据均取加料板与塔釜物性数据的平均值II 填料层高度计算---理论板当量高度(HETP)法 (精馏塔采用)理论板当量高度的值与填料塔内的物系性质、气液流动状态、填料的特性等多种因素有关,一般源于实测数据或由经验关联式进行估算。
在实际设计缺乏可靠数据时,也可取文献(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265)P273页所列数据作参考。
填料尺寸/mm 25 3850等板高度/mm矩鞍环 430 550 750 鲍尔环 420 540 710 阶梯环环鞍430 530 650以上关于HETP 的取法是基于一种认识,即填料塔的分离效率与被分离物系的物理性质无关或影响很小,显然这与实际情况相比,有时会出现较大的偏差,故在设计时应特别给予注意。
精馏段 RRN Z H E T PN N T S M=⨯= NTSM ——与1m 填料分离能力相当的塔板数HETP ——与1层理论板分离能力相当的填料层高度精馏段总压降 (/)p Z p Z ∆=⨯∆式中: /p Z ∆——每米填料层压降提馏段的计算方法与精馏段相同。