以下是工程师在维修过程中,总结出来的一些经验,供大家参考,希望对大家能有所帮助。
开关电源的几个维修步骤如下:1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。
2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。
3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。
4、检测吸收回路D5、R11、C9是否正常(断电情况下测试)。
5、在确定上述元件正常的情况下,我们可以把开关电源板从变频器上取下单独对其进行加电试验。
用调压器缓缓地调至开关电源的额定电压值,此时应能听到变压器起振时的吱吱声,如没有听到起振的声音,用万用表检测UC3844的电源正、负级之间是否有12V—16V左右的直流电压。
6、在确定UC3844的供电端电压正常后,可用示波器察看一下UC3844的6脚是否有PWM 波输出到开关管的触发端(根据电路设计的不同,PWM波的频率一般在20KHZ—100KHZ 之间)。
7、如果没有PWM波输出,则更换定时元件C5、R8、C6或UC3844。
经过上述几个步骤的排除,开关电源应该可以正常工作了。
在变频器中,开关电源的种类很多,但基本原理都是一样的,比如说每个PWM管理芯片都有供电端、定时元件RC网络、输出PWM波的端口等,只要我们了解了它们的工作原理,按照一定的方法步骤都能够把故障排除掉。
下面工程师就把实际维修中遇到的问题和解决办法列举出来,供大家参考一下。
【案例1】:台达变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。
按照上述维修步骤对开关电源板进行测量。
在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。
为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险)。
【案例2】:台安变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、滤波电容等关键器件,在确定没问题之后上电试验,输出各组电压正常,装机测试正常,故障排除。
【案例3】:西门子变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量通过,第三步测量通过,第四步测量通过,然后单独对电源板加电测量PWM调制芯片的电源端对地有12.5V左右的电压,说明供电正常。
用示波器看芯片的PWM 输出端,发现没有PWM调制波形。
更换PWM调制芯片后,上电试验正常,故障排除。
【案例4】:施耐德变频器(故障现象:上电无显示)屡烧开关管经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。
按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量发现开关管击穿,第三步测量通过,第四步测量通过,更换新的开关管,单独对电源板加电,管子又烧了。
把开关管拆下后不装管子,通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,也正常。
用示波器看芯片的PWM输出端,发现PWM波只有5-6 KHZ左右,断电后把定时元件拆下测量,发现定时电阻阻值变大,更换定时电阻、开关管后上电正常,不再烧电源管,故障排除。
案例5:伦茨变频器(故障现象:上电无显示)屡烧开关管按照维修步骤对开关电源板进行测量。
第一步测量通过,第二步测量时发现开关管c-e结击穿,第三、四、五、六、七步都测量通过。
装上新的开关管上电试验,随着调压器电压的升高,可以听到起振的吱吱声,就是有点响,把电压调到额定电压后测量输出电压低于正常值,不到2分钟,突然闻到一股烧焦的味,保险丝就断了,赶快断电发现开关管很烫手,测量发现其已经击穿。
拆下开关管通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,用示波器看芯片的PWM输出端,发现有PWM波输出且频率在30 KHZ左右,也正常。
因此怀疑刚换的开关管质量不行,又换上一只,上电试验,结果又把管子给烧了,断电后无意之间碰到了吸收回路的元件,发现烫手,可是在测量的时候正常啊,于是又测一遍,还是正常。
干脆把吸收回路先拆了,又换上一只管子通电试验,发现变压器的吱吱声小了,测量各组输出电压也正常。
运行了20分钟开关管也没再烧,断电后触摸开关管微热,属正常起热状态,因此判断故障在吸收回路,更换吸收回路元件,故障排除。
空压机改变频器——其实空压机改变频并不复杂,很简单,下面我们以最近一次改造为例子。
介绍一下我们的改造经验。
请大家指点。
、改造机器为一台螺钢牌螺杆式空压机,30P,汉钟的压缩机机头,MAM-KY06S控制系统。
用户观察到机器经常卸载停机,具备节能改造的空间。
第一步,通过空压机的控制器查询空压机的运行和加载时间,如果控制器没有这个参数记录,则需要自行在空压机上面安装计时器,记录一段空压机正常工况的运行时间记录。
根据上面的参数,计算多机器的空负载比较,预测节能效果。
这个结果很重要,如果这个比较不超过15%以上的话,那改造后节能效果不理想。
建议用户不要改造,免得到改造完成时候才发现,那就晚了。
上面的螺钢牌螺杆式空压机空负载时间比为1:1,节能空间50%,预测改造后,空压机的节能效果可以达到30%-40%。
可以确认空压机节能改造的意义。
第二步,根据机器工况,电路结构和安装结构等信息,编写出改造方案。
绘制电路原理图,未改造前作好打算。
改造方案得到用户确认同意后,则可以定购材料。
根据上述螺钢牌螺杆式空压机的工况,我们初步确定的方案为,采用MAM-KY02S VF型控制器代替它原来的系统,这样改造简单,而且控制器自带PID,省去PID设置的麻烦,同时具有工变频转换功能,直接在控制器上面操作即可以时间变频的转换。
人机界面操作方便,同时在安装尺寸方面和MAM-KY06S是一样的,安装按原理位置方式安装即可,也省去开孔等工序。
变频器采用22KW的国产品牌。
有空压机放置位置靠近墙壁,因此,变频器也可以直接安装在墙壁上,通过电缆线进行连接。
根据我们电路原理图设计的需要,再购买了交流接触器,温度控制器,轴流风扇。
由于MAM-KY06S采用的压力开关式控制器,而MAM-KY02S采用的压力传感器的方式,因此在购买MAM-KY02S时,需要再配套压力传感器。
交流接触器——工变频转换温度控制器——电机高温保护(变频改造以后,电机温度所到电机转速和辅助风扇影响,需要保护)轴流风扇——主电机散热(辅助风扇)我们的基本电路如下。
改造时,基本电路按照原理图连接,必要时可以更改电路实现所需功能。
第三步,根据设计的原理图,将空压机内部线路改造,改造时,必要作好每一条线路的记录,避免查线路,这样浪费时间。
MAM-KY02S连接到变频器的信号线,必须采用屏蔽线路。
并且要求将屏蔽网线接地,以保证通信的可靠。
线路连接完毕,断开主电机马达或连轴器。
再次检查相关电路,准备首次上电。
第四步,上电,断开变频器连接到空压机的输出线。
通过MAM-KY02S显示文本设置当前运行模式为工频运行,启动空压机,检查空压机当前的运行状态是否正常。
是否与未改造前一样。
重点检查主电机转向,风机转向。
将运行状态设置为变频运行,确认工变频转换的两个交流接触器动作是否符合要求(这项检修必须断开变频器输出,以免380V电源倒灌到变频器上,引起变频器损坏。
)。
确认完毕。
第五步,完成第四步以后,在当前状态下,设置变频器参数。
变频器一般要求设置参数如下:1,变频器输出最高频率,50HZ2,变频器输出最低输出频率,20HZ,(如果电机在低频运行时,发热量不高,可以设置第一点,这样更节能,但是要确保电机温升不高于80度,否则,电机很容易设备)3,设置变频器频率过低保护,低于15HZ后自动停机。
(也是为了保护电机)4,设置变频器禁止反向输出,避免电机反转损坏电机。
5,设置变频器禁止操作面板启动。
6,设置变频器外部信号启动。
7,设置变频器频率给定通道为外部端子CI输入4-20mA。
8,设置变频器输出端子为故障报警。
9,其他参数默认即可。
如有其他需要再根据实际需要设置。
设置完毕,连接变频器输出线到空压机。
再次上电试机。
检查电机转向是否符合要求。
主电机辅助散热风扇转向是否正确,风量是否足够。
检查当前MAM-KY02S显示文本显示频率与变频器的是否一致。
如果不一致可以通过变频器的CI通道增益修改比例。
一般这个比例要求不高,检查MAM-KY02S控制器输出最低时,变频器输出频率是否为20HZ。
最高频率是否为50HZ。
确认完成。
可以装上皮带测试。
第六步,安装上皮带或者联轴器,将加载阀电源断开。
让空压机再变频状态,空载运行。
检查运行情况。
确认正常,再转行为工频运行,确认都正常。
那么可以安装上加载阀试运行。
工频状态下确认运行正常。
变频运行是否正常。
主电机负载和低频运行是否温度正常。
MAM-KY02S VF型控制器只有3个频段,分别是最高频段,节能频段,卸载频段。
最高频段——输出频率为50HZ,当空压机气压低于0.7bar时运行,相当于全速运行。
节能频段——控制器默认为30HZ,此频段运行在气压高于0.7-08bar时。
节能运行。
卸载频段——该频段运行在空压机卸载状态,此时,空压机主电机保持运行趋势,空载,因此频率可以低一点,但是必须确认满足电机自身散热要求。
第七步,空压机改造为变频后,试运行,让空压机在变频状态下连续运行1天,1天内观察电机温升温度。
打气量是否满足要求。
空负载是否比较频繁等工作情况。
观察电机加速和减速时变频器有没有过压或者过流现象,如果有,设置一下变频器的升频速度和降频速度即可解决问题。
观察电机负载加速时,有没有电机共振抖动的情况,如果有,那么观察抖动频段,在变频器上设置绕过该频段即可。
通过容调阀降低空压机升降频率频率。
测量变频改造后的运行电流。
我们上面例子的空压机,主电机测量各状态电流如下:最高频段,运行电流为45A节能频段,运行电流为24A卸载频段,运行电流为9A最高温升75度。