当前位置:文档之家› 冲天炉熔炼工艺基础

冲天炉熔炼工艺基础

冲天炉熔炼工艺基础1、冲天炉熔炼基本原理(1)底焦燃烧:冲天炉底焦燃烧可以划分为两个区带:A、氧化带:从主排风口到自由氧基本耗尽.二氧化碳浓度达到最大值的区域。

B、还原带:从氧化带顶面到炉气中[CO2]/[CO]浓度基本不变的区域.从风口引入的风容易趋向炉壁.形成炉壁效应.形成一个下凹的氧化带和还原带.对熔化造成不利影响。

①不易形成一个集中的高温区.不利于铁水过热;②加速了炉壁的侵蚀;③铁料熔化不均匀.铁液不易稳定下降,影响化学成分。

解决方法:①采用较大焦炭块度.使风均匀送入;②采用插入式风嘴;③采用曲线炉膛;④采用中央送风系统;⑤熔炼过程中为使焦炭不易损耗.送风量要与焦炭损耗相适应。

根据炉气、炉料、铁水浓度和温度.炉身分为4个区域:(1)预热区:从加料口下沿.炉料表面到铁料开始熔化的区域称为预热区.下面的炉气温度可达1200℃—1300℃.预热带的上部炉气温度为200℃—500℃。

由于这一区域的平均温度不高.炉气黑度和辐射空间较小.炉气在料层内流速较大.炉料与炉气之间的热交换以对流为主.炉料在预热区内停留时间较长.一般为30分钟左右.预热区的高度受有效高度、底焦高度、炉内料面的实际位置、炉料块度、熔化速度、焦铁比的影响。

(2)熔化区:从铁料开始熔化到熔化完毕这一区域称为熔化区.在实际熔炼过程中.底焦顶面高度的波动范围大致等于层焦的厚度.熔化区内的热交换方式仍以对流为主.在实际熔炼过程中.熔化区不是一个平面区带.而是一个中心下凹的曲面.从铁水过热和成分均匀度出发希望熔化区窄而平直.熔化区在炉内位置的高低基本上是由炉气和温度分布状态决定.也受焦炭的烧失速度、批料重量、炉料块度等因素影响.这些因素将使铁料的受热面积、受热时间、受热强度发生变化.造成熔化区高度波动(影响出铁温度).当焦铁比一定.熔化区的平均高度将会因批料重量的减小而提高.从而扩大了过热区.提高了铁水温度.但是批料层不宜过薄.否则易混料使加料操作不便。

(3)过热区:从铁液熔化以后.铁水下滴过程中.与高温炉气和炽热的焦炭相接触.温度进一步提高.此区域称为过热区(过热区炉气温度一般在1600℃—1700℃)。

过热区内以焦炭与铁水接触传导传热为主.焦炭表面燃烧温度对热交换效果有重要影响。

因而设法强化底焦燃烧.经测定铁水滴成铁水小流穿越底焦的时间一般不超过30秒.而在这一区间内铁水却要提高350℃左右.比预热区大了24倍左右.其传热强度为11KJ/Kg.s.达到这样高的传热强度.除了以高炉温做保证外.还要保证底焦具有足够的高度.这是提高过热效应的关键。

(4)炉缸区:在一般操作条件下.炉缸内没有空气供给.焦炭几乎不燃烧.此区域温度一般不超过1520℃.所以对高温铁水来说.炉缸区是一个冷却区.且炉缸越深.冷却作用越大。

为了提高此区域的温度.可以适当地开渣口操作.但对铁水的氧化程度有害.所以当熔炼稳定以后.还要闭渣操作。

3、冶金过程金属在冲天炉内被预热、熔化、过热的过程中.金属与炉气、焦炭、炉渣相接触.发生一系列的物理、化学、冶金反应.引起铁水化学成分的变化。

(1)、砂、焦炭中的灰分、金属元素氧化形成的氧化物.以及侵蚀剥落的炉衬材料等相互作用形成炉渣.其主要成分为二氧化硅、三氧化二铝.这种粘滞的炉渣包附在焦炭表面.不仅阻碍燃烧.而且不利于冶金反应的顺利进行。

因此必须用熔剂加以中和和稀释.以便顺利地排除.熔剂主要是石灰石.加入量一般为焦炭重量的 30%左右.炉渣的性质通常以炉渣碱度衡量.碱性炉渣有利于炉内的脱硫反应.可以降低铁水的含硫量。

(2)、化学成分的变化.冲天炉熔炼化学成分变化有如下规律:①、含碳量的增加。

铁水的含碳量的变化.总是趋于共晶成分;②、含硫量往往增加40%—100%.铁水增硫量主要来自于焦炭;③、磷量基本不变;④、铁、硅、锰等合金元素烧损.炉内氧化作用越大.元素烧损越严重。

附:冷风水冷无炉衬冲天炉一期工程为12T1、炉体结构:上部为加料口.下面装有料位传感器和环形抽气道(抽走气物)。

炉壳为圆锥形.上小下大.便于冷却水顺壁而下冷却炉壁.自加料口至风口这段炉身内.除抽气道砌有耐火材料外都没有炉衬.在炉壁外壳设有多道的环形喷水管.用于喷淋.冷却炉壁.风口数量8个.为使空气伸入到熔炉的中心.减少炉壁效应.改善底焦燃烧.并避免高温气流冲刷炉壁.用水冷风口插入炉内供风.炉缸内砌有耐火材料.炉缸内分别有出铁口、除渣口可以进行连续地出铁和除渣.并且从冲天炉加料口下方抽出的炉气经过螺旋重力除尘以后.通过布袋除尘器。

2、冲天炉的水系统:由炉体及风口冷却水和冲渣水两部分组成.炉体冷却水和风口冷却水共用一套供水装置.冲渣水单独一套供水装置。

冲天炉送风系统采用高压离心式风机.电机功率130KW .额定风量:3000m³/h。

在环形抽气道管道上配备一台冷风机.把抽出的气体与冷风机的气体混合.将高温炉气降温.一般应降到150℃以下。

炉后的加料系统采用计算机自动配料控制系统振动给料.传感器传输数据.反馈回的数据由计算机计算后自动平衡炉料。

上料机构为爬式加料机.冲天炉设有中央微机控制室.通过屏幕监测和控制设备。

4、主要特点:①CO含量通常比CO2高.炉气的燃烧比一般在40%左右.最大不超过60%.所以.炉气氧化性弱.铁和合金的烧损小.Si的烧损通常不到5%.渣中的氧化铁含量低.一般不到2%.在弱氧化性条件下.熔炼铸铁是目前国内外冲天炉较为普遍的一种操作方式目的是为了以最低的熔炼损耗获得高温优质铁水。

②炉况稳定连续工作时间长.这种熔炼炉由于没有炉衬.在整个熔炼操作期间炉型和炉膛尺寸始终是稳定的.风量和风口插入深度.都可以进行调节和控制因而炉况稳定。

此外.各种熔炼炉.没有因为炉衬熔蚀所形成的炉渣.渣量只占熔炼铸铁重量的0.1-0.3%。

由于渣量少.由炉渣(一般有炉衬冲天炉渣量3-6%)引起的铁水化学成分的波动也就小。

所以.铁水化学成分含量正确控制并保持稳定。

熔炉的连续工作时间不再受炉衬寿命的制约.而主要取决于炉缸的寿命。

③调节范围大.这种熔炼炉的风量、风口插入深度以及决定炉缸深度的炉底厚度都可以调节和改变.所以在保持铁水温度不变的情况下.熔炉的熔化率可以灵活的调节.熔炉的最高和最低熔化率可以相差一倍.在全部用废钢作炉料时.通过改变炉底厚度.可以熔炼得含C量低到2.8%.高至4.0%的铁水。

此外.通过造碱性渣(碱度1.3-1.6)可以将铁水的含S量降到0.035%以下.因此.这种熔炉适用球墨铸铁管的生产。

④对周围的环境污染小.由于炉气净化设备比较完善.经过净化后的炉气含灰量仅为0.05-0.1g/m³.低于环保标准(不大于0.2g/ m³的标准)。

附:一、冲天炉熔炼过程在熔化过程中底焦燃烧而消耗.为了保证整个熔炼过程连续正常进行就必须及时得补充底焦.以此来始终保持底焦的高度。

随同铁料一起加入的焦碳就可以补尝底焦的消耗.熔化过程的底焦同点火前所加底焦不是同一高度.底焦的顶面是指金属炉料大体熔清的位置。

在底焦高度内只有铁水和熔渣不断的穿过焦炭柱.它的高度和上界面的形状随熔化工艺和供风方式而改变.底焦燃烧状况(炉温、炉气成份、炉气成分的分布)是冲天炉熔化过程的基础.冲天炉的熔化过程就是合理的组织底焦燃烧.以此来获得炉内的高温.同时造成铁料与焦碳炉气间的最佳热交换过程。

(一)、造渣过程冲天炉燃烧和换热过程中会从各个方面带入炉内各种各样的氧化物.其中有焦碳的灰分、金属炉料的铁锈、粘土和砂子腐蚀掉的炉衬的。

金属炉料中一些元素的烧损也会产生氧化物.主要有二氧化硅、三氧化二铝、氧化镁、氧化亚铁其中以酸性氧化物二氧化硅为主.如果这些氧化物残留在铁水中会使铁水粘度增大流动性下降.并恶化铸件的机械性能.因此伴随熔化过程必须有一个造渣过程.随同每批炉料加入一定数量的溶剂.以便使这些化合物变为熔渣从炉内排出获得干净的铁水和洁净的焦碳表面。

常用的造渣熔剂石灰石加入炉内后逐步加热到900℃时开始分解生成石灰.石灰(CaO)是较强的碱性氧化物可以同高熔点酸性氧化物组成低熔点的复杂盐类.炉渣成分对冲天炉熔炼过程、铁水质量有重大影响.调整炉渣成分可以促成或者是阻碍一些反应的进行.按照组成物的化学性质分有三类:酸性氧化物包括二氧化硅、五氧化二磷.碱性氧化物包括氧化钙.氧化镁.氧化锰.氧化亚铁.中性氧化物包括氧化铝。

如果渣中的酸性氧化物多就称为酸性渣.碱性=CaO%+MgO% .碱性在0.8以下SiO2%时称为酸性渣.碱性在0.8~1.0时称为中性渣.1.0以上称为碱性渣.在冲天炉内还可以加入萤石(CaF2)用以降低炉渣熔点.这种氟盐投炉以后可以生成氟化氢对人体极其有害.目前许多工厂已禁止使用。

经验表明.不加入萤石对炉渣性质并没有不良影响。

(二)、单个焦碳或炭柱的燃烧碳的燃烧具有两个条件:温度和氧.碳在一定温度以上才能和氧发生燃烧反应.温度范围是600~700℃.此范围称为碳的着火温度.在这一温度下.焦碳表面上的碳开始与空气中的氧作用首先形成CxOy.然后分解成一氧化碳和二氧化碳并放出热量这叫一次反应.所生成的二氧化碳扩散到焦炭表面就会被碳还原生成一氧化碳并吸收热量CO2+C=2CO—3438千卡/公斤碳(1-1)反应条件温度800~1200℃才可顺利进行.二氧化碳的氧被碳夺走生成一氧化碳.在化学上称为二氧化碳的还原反应.这一反应消耗了碳而不放出热量反而吸收了热量.这是冲天炉燃烧过程所不希望的.一次燃烧的另一产物一氧化碳由焦炭表面扩散出来与氧相遇可生成二氧化碳并放出热量.CO+1/2O2=CO2+3000千卡/公斤碳.这个气相反应在一定空间压力之下温度在900~1000℃范围内才可能进行.通过温度、氧的数量和焦炭性质等因素的变化调整一氧化碳和二氧化碳的数量.氧过剩时或者是温度较高时可以获得单一产量二氧化碳.此时每公斤碳只能放出2201千卡热量C+1/2O2=CO+2201千卡/公斤碳,碳加氧分子生成二氧化碳叫做完全燃烧;碳加氧原子生成一氧化碳叫做不完全燃烧.不完全燃烧释放的热量只有完全燃烧的约三分之一.完全燃烧时每公斤碳需要供给8.89M3的空气;不完全燃烧时每公斤碳需要供给 4.44M3的空气。

实际上焦炭的燃烧过程属于气固多相反应.包括气体扩散以及焦炭表面上的反应等几个环节.整个反应过程的速度同各个环节的进行速度有关。

反应所表现出来的速度决定于速度最慢的环节。

温度很高.气流速度很低.化学反应速度很大时整个燃烧反应速度决定于气体扩散速度.就把它称为扩散区;相反温度很低.气流速度很高.整个燃烧反应速度决定于化学反应速度.就把它称为动力区。

如果化学反应速度与气体扩散速度相接近.则称为扩散动力区。

各种因素如温度、气流速度、焦炭性质对燃烧速度的影响在上述三个区内各不相同.如在动力区温度作用非常大.提高温度则反应速度急剧上升.焦炭的反应能力和比表面积也有影响;在扩散区情况相反.气体的扩散起决定性作用.温度的影响小的多.它通过对气体的扩散速度的影响起作用.焦炭的反应能力不在起作用.但它的几何因素(块度、气孔率)仍有影响;在扩散动力区.温度和扩散因素都有明显影响.介于扩散区和动力区之间.根据焦炭燃烧的这些特点就可以选择强化燃烧的措施。

相关主题