当前位置:文档之家› 溶解热的测定

溶解热的测定

实验七 溶解热的测定一、实验目的1.掌握采用电热补偿法测定热效应的基本原理。

2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热、积分稀释热和微分稀释热。

3.掌握溶解热测定仪器的使用。

二、实验原理物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。

积分溶解热是指定温定压下把1mol 物质溶解在n 0mol 溶剂中时所产生的热效应。

由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以△sol H 表示。

微分溶解热是指在定温定压下把1mol 物质溶解在无限量某一定浓度溶液中所产生的热效应,以表示.在溶解过程中浓度可视为不变,因此又称为定浓度溶解热,以0,,)(n p T sol nH∂∆∂表示,即定温、定压、定溶剂状态下,由微小的溶质增量所引起的热量变化。

稀释热是指溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。

它也有积分(变浓)稀释热和微分(定浓)稀释热两种。

积分稀释热是指在定温定压下把原为含1mol 溶质和n 01mol 溶剂的溶液冲淡到含n 02mol 溶剂时的热效应,它为两浓度的积分溶解热之差。

微分稀释热是指将1mol 溶剂加到某一浓度的无限量溶液中所产生的热效应,以n p T sol n H,,0)(∂∆∂表示,即定温、定压、定溶质状态下,由微小的溶剂增量所引起的热量变化。

积分溶解热的大小与浓度有关,但不具有线性关系。

通过实验测定,可绘制出一条积分溶解热△sol H 与相对于1mol 溶质的溶剂量n 0之间的关系曲线,如图1所示,其他三种热效应由△sol H~n 0曲线求得。

设纯溶剂、纯溶质的摩尔焓分别为H m1和H m2,溶液中溶剂和溶质的偏摩尔焓分别为H 1和H 2,对于由n 1mol 溶剂和n 2mol 溶质组成的体系,在溶质和溶剂未混合前,体系总焓为:图1H=n 1 H m1+n 2 H m2 (1)将溶剂和溶质混合后,体系的总焓为:H’= n 1 H 1+n 2 H 2 (2)因此,溶解过程的热效应为:△H=n 1(H 1-H m1)+n 2(H 2-H m2)=n 1△H 1+n 2△H 2 (3)在无限量溶液中加入1mol 溶质,(3)式中第一项可以认为不变,在此条件下所产生的热效应为(3)式中第二项中的△H 2,即微分溶解热。

同理,在无限量溶液中加入1mol 溶剂,(3)式中第二项可以认为不变,在此条件下所产生的热效应为(3)式中第一项中的△H 1,即微分稀释热。

根据积分溶解热的定义,有:△sol H=2H n (4)将(3)式代入,可得:△sol H=21n n △H 1+△H 2=n 01△H 1+△H 2 (5)此式表明,在△sol H~n 0曲线上,对一个指定的n 01,其微分稀释热为曲线在该点的切线斜率,即图1中的AD/CD 。

n 01处的微分溶解热为该切线在纵坐标上的截距,即图1中的OC 。

在含有1mol 溶质的溶液中加入溶剂,使溶液量由n 01mol 增加到n 02mol ,所产生的积分溶解热即为曲线上n 01和n 02两点处△sol H 的差值。

本实验测硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。

实验时先测定体系的起始温度,溶解进行后温度不断降低,由电加热法使体系复原至起始温度,根据所耗电能求出溶解过程中的热效应Q 。

(6)式中,I 为通过加热器电阻丝(电阻为R )的电流强度(A),V 为电阻丝两端所加的电压(V),t 为通电时间(s)。

三、仪器和试剂1.仪器SWC-RJ 一体式溶解热测量装置(如右图,具体参数为:加热功率:0~12.5W 可调;温度/温差分辨率:0.01℃/0.001℃;计时时间范围:0~9999 S ;输出:RS232C 串行口)称量瓶8只,毛刷1个,电子分析天平,台秤2.试剂硝酸钾固体(A.R.已经磨细并烘干)四、实验步骤1.称样取8个称量瓶,先称空瓶,再依次加入约为2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5 g的硝酸钾(亦可先去皮后直接称取样品),粗称后至分析天平上准确称量,称完后置于保干器中,在台天平上称取216.2 g蒸馏水于杜瓦瓶内。

具体数据记录见五中,称量瓶洗净吹干后,一定要称量空瓶的质量,由于没有保干器,所以称量以后要马上盖上盖子。

蒸馏水称量了218.2g。

2.连接装置如右图所示,连接电源线,打开温差仪,记下当前室温。

将杜瓦瓶置于测量装置中,插入探头测温,打开搅拌器,注意防止搅拌子与测温探头相碰,以免影响搅拌。

将加热器与恒流电源相连,打开恒流电源,调节电流使加热功率为2.5瓦,记下电压、电流值。

同时观察温差仪测温值,当超过室温约0.5℃时按下“采零”按钮和“锁定”按钮,并同时按下“计时”按钮开始计时。

当前室温是15.6℃,注意要放入搅拌子。

当显示温度超过室温0.5℃后,按下“状态转换”按钮,系统自定采零并开始计时,加热功率为2.30W左右。

3.测量将第一份样品从杜瓦瓶盖口上的加料口倒入杜瓦瓶中,倒在外面的用毛刷刷进杜瓦瓶中。

此时,温差仪显示的温差为负值。

监视温差仪,当数据过零时记下时间读数。

接着将第二份试样倒入杜瓦瓶中,同样再到温差过零时读取时间值。

如此反复,直到所有的样品全部测定完。

采零后要迅速开始加入样品,否则升温过快可能温度回不到负值。

加热速度不能太快也不能太慢,要保证温差仪的示数在-0.5℃以上。

具体数据记录见五中。

4.称空瓶质量在分析天平上称取8个空称量瓶的质量,根据两次质量之差计算加入的硝酸钾的质量。

实验结束后,打开杜瓦瓶盖,检查硝酸钾是否完全溶解。

如未完全溶解,要重做实验。

倒去杜瓦瓶中的溶液(注意别丢了搅拌子),洗净烘干,用蒸馏水洗涤加热器和测温探头。

关闭仪器电源,整理实验桌面,罩上仪器罩。

具体数据记录见五中,打开杜瓦瓶盖发现KNO3已完全溶解,证明实验成功。

五、数据记录和处理室温15.6℃ 大气压力(kPa):102.801.数据记录本实验记录的数据包括水的质量、8份样品的质量、加热功率以及加入每份样品后温差归零时的累积时间。

2.将数据输入计算机,计算n水和各次加入的KNO3质量、各次累积加入的KNO3的物质的量。

根据功率和时间值计算向杜瓦瓶中累积加入的电能Q。

sol0用以下计算式计算各点的Δsol H 和n 0:Δsol H=3KNO n Q(7)n 0=0n n (8) 瓶号 1 2 3 4 5 6 7 8 Δsol H/KJ/mol36.953 36.161 35.978 35.277 34.674 34.041 33.283 32.336n 0/mol 494.55 308.21 185.58 126.49 90.652 68.797 55.654 45.984 在origin 中绘制Δsol H~n 0关系曲线,并对曲线拟合得曲线方程。

使用多项式拟合进行二次拟合,得到如下图:可见拟合度并不好,故采用 三次拟合使用多项式拟合进行二次拟合,R-Square(COD) SD N P----------------------------------------------------0.88271 0.63253 8 0.00471得到如下图:Polynomial Regression for DATA1_B:Y = A + B1*X + B2*X^2 + B3*X^3Parameter Value Error------------------------------------------------------------A 30.10599 0.55534B1 0.06744 0.01047B2 -2.34981E-4 4.86045E-5B3 2.56103E-7 6.11745E-8------------------------------------------------------------R-Square(COD) SD N P------------------------------------------------------------0.97821 0.30485 8 8.84128E-4------------------------------------------------------------ 拟合度达到0.98,所以采用三次拟合。

得到的曲线方程为y =30.10599+0.06744x-2.34981E-4x2 +2.56103E-7x34.积分熔解热,积分稀释热,微分熔解热,微分稀释热的求算=80、100、200、300、400代入3中的曲线方程,求出溶液在这几点处将n的积分溶解热。

值代入所得的导函数,求出这几将所得曲线方程对n0求导,将上述几个n个点上的切线斜率,即为溶液n在这几点处的微分稀释热:求得一阶导数方程为y′=0.06744-4.69962E-4x +7.68309E-7x2利用一元函数的点斜式公式求截距,可得溶液在这几点处的微分溶解热。

最后,计算溶液n为80→100,100→200,200→300,300→400时的积分稀释热。

六、注意事项1.实验开始前,插入测温探头时,要注意探头插入的深度,防止搅拌子和测温探头相碰,影响搅拌。

另外,实验前要测试转子的转速,以便在实验室选择适当的转速控制档位。

2.进行硝酸钾样品的称量时,称量瓶要编号并按顺序放置,以免次序错乱而导致数据错误。

另外,固体KNO3易吸水,称量和加样动作应迅速。

3.本实验应确保样品完全溶解,因此,在进行硝酸钾固体的称量时,应选择粉末状的硝酸钾。

4.实验过程中要控制好加样品的速度,若速度过快,将导致转子陷住不能正常搅拌,影响硝酸钾的溶解;若速度过慢,一方面会导致加热过快,温差始终在零以上,无法读到温差过零点的时刻,另一方面可能会造成环境和体系有过多的热量交换。

5.实验是连续进行的,一旦开始加热就必须把所有的测量步骤做完,测量过程中不能关掉各仪器点的电源,也不能停止计时,以免温差零点变动及计时错误。

6.实验结束后应杜瓦瓶中是否有硝酸钾固体残余,若硝酸钾未全部溶解,则要重做实验。

七、实验讨论1.固体KNO3易吸水,故称量和加样动作应迅速。

实验书中要求固体KNO3在实验前务必研磨成粉状,并在110℃烘干,而在实验中并没有将样品进行烘干,只是盖上了盖子,故而带来误差。

但考虑到实验是在冬天进行,气候干燥,故此影响不大。

2.为了使KNO3固体在加入杜瓦瓶时不撒出来,可以在加料口出加上一个称量纸卷成的漏斗。

但是这样操作会使一些药品聚集在纸漏斗口处,所以每次加完药品都要抖一抖称量纸,使样品全部进入杜瓦瓶。

相关主题