当前位置:文档之家› 高中物理选修34知识点

高中物理选修34知识点

电磁波电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收电磁波与信息化社会:电视、雷达等电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线选 修3—4一、知识网络周期:gLT π2=机械振动简谐运动物理量:振幅、周期、频率 运动规律简谐运动图象阻尼振动 受力特点回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mgF -= 受迫振动 共振波的叠加 干涉 衍射 多普勒效应 特性 实例声波,超声波及其应用机械波形成和传播特点 类型横波 纵波 描述方法波的图象波的公式:vT =λx=vt二、考点解析考点80 简谐运动 简谐运动的表达式和图象 要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。

简谐运动的回复力:即F = – kx注意:其中x 都是相对平衡位置的位移。

区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。

可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。

A 、简谐运动(关于平衡位置)对称、相等①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. ③对称段:经历时间相同④一个周期内,振子的路程一定为4A (A 为振幅); 半个周期内,振子的路程一定为2A ; 四分之一周期内,振子的路程不一定为A相对论简介相对论的诞生:伽利略相对性原理狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性长度的相对性: 20)(1cvl l-=时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u v u u '+'=相对论质量: 20)(1cv m m -=质能方程2mc E=广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别每经一个周期,振子一定回到原出发点;每经半个周期一定到达另一侧的关于平衡位置的对称点,且速度方向一定相反 B 、振幅与位移的区别:⑴位移是矢量,振幅是标量,等于最大位移的数值⑵对于一个给定的简谐运动,振子的位移始终变化,而振幅不变 思考:1、平衡位置的合力一定为0吗? (单摆)2、弹簧振子在对称位置弹性势能相等吗? (竖直弹簧振子)3、人的来回走动、拍皮球时皮球的运动是振动吗?考点81 单摆的周期与摆长的关系(实验、探究) 要求:Ⅰ 1)单摆的等时性(伽利略);即周期与摆球质量无关,在振幅较小时与振幅无关 2)单摆的周期公式(惠更斯)glT π2=(l 为摆线长度与摆球半径之和;周期测量:测N 次全振动所用时间t ,则T=t/N )3)数据处理:(1)平均值法;(2)图象法:以l 和T 2为纵横坐标,作出224T g l π=的图象(变非线性关系为线性关系);4)振动周期是2秒的单摆叫秒摆摆钟原理:钟面显示时间与钟摆摆动次数成正比 考点82 受迫振动和共振 要求:Ⅰ受迫振动:在周期性外力作用下、使振幅保持不变的振动,又叫无阻尼振动或等幅振动。

f 迫 = f 策,与f 固无关。

A 迫 与∣f 策—f 固∣有关,∣f 策—f 固∣越大,A 迫越小,∣f 策—f 固∣越小,A 迫越大。

当驱动力频率等于固有频率时,受迫振动的振幅最大(共振) 共振的防止与应用考点83 机械波 横波和纵波 横波的图象 要求:Ⅰ 1)机械波⑴产生机械波的条件:振源,介质——有机械振动不一定形成机械波 有机械波一定有机械振动⑵机械波的波速由介质决定,同一类的不同机械波在同一介质中波速相等。

与振源振动的快慢无关⑶机械波传递的是振动形式(由振源决定)、能量(由振幅体现)、信息 2)机械波可分为横波与纵波横波:质点的振动方向与波的传播方向垂直。

特点:有波峰、波谷. 只能在固体中传播(条件:剪切形变),为方便将水波认为是横波 纵波:质点的振动方向与波的传播方向在同一直线上.特点:有疏部、密部. 气体、液体只能传递纵波 3)波的独立传播与叠加 4)次声波与超声波次声波:频率小于20Hz ,波长长,易衍射,传播距离远,研究与应用刚起步 超声波:频率大于20000Hz ,波长短,直线传播效果好(声纳),穿透能力强(几厘米厚的金属)。

应用广泛:声纳、B 超、雷达、探伤、超声加湿、制照相乳胶5)横波图象:表示某一时刻各个质点离开平衡位置位移情况。

后一质点的振动总是重复前一质点的振动;特别要能判断质点振动方向或波的传播方向。

注意:(1)周期性、方向性上引起的多解可能性;(2)波传播的距离与质点的路程是不同的。

6)波动图象表示 “各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。

考点84 波长、频率(周期)和波速的关系 要求:Ⅰλλ•===f Tt s v (ν由介质决定,f 由波源决定) ①波形向前匀速平移,质点本身不迁移,x 可视为波峰(波谷)移动的距离 ②在波的图象中,无论时间多长,质点的横坐标一定不变③介质中所有质点的起振位置一定在平衡位置,且起振方向一定与振源的起振方向相同 ④注意双向性、周期性⑤注意坐标轴的单位(是m ,还是cm ;有无×10-n 等等) 注意同时涉及振动和波时,要将两者对应起来 关于振动与波⑴质点的振动方向判断: 振动图象(横轴为时间轴):顺时间轴“上,下坡” 波动图象(横轴为位移轴):逆着波的传播方向“上,下坡”共同规律:同一坡面(或平行坡面)上振动方向相同,否则相反 ⑵一段时间后的图象a 、振动图象:直接向后延伸b 、波动图象:不能向后延伸,而应该将波形向后平移 ⑶几个物理量的意义: 周期(频率):决定振动的快慢,进入不同介质中,T (f )不变 振幅:决定振动的强弱波速:决定振动能量在介质中传播的快慢 ⑷几个对应关系①一物动(或响)引起另一物动(或响)———受迫振动→共振(共鸣) ②不同位置,强弱相间———干涉(要求:两波源频率相同) 干涉:a 、振动加强区、减弱区相互间隔;b 、加强点始终加强(注意:加强的含义是振幅大,千万不能误认为这些点始终位于波峰或波谷处)、减弱点始终减弱.c 、判断:若两振源同相振动,则有加强点到两振源的路程差为波长的整数倍,减弱点到两振源的路程差为半波长的奇数倍.③绕过障碍物———衍射(要求:缝、孔或障碍物的尺寸与波长差不多或小于波长) 缝后的衍射波的振幅小于原波★波的多解题型⑴方向的多解:考虑是否既可以向左,也可以向右 ⑵波形的多解: ★几种典型运动不受力:静止或匀速直线运动几种最简单的运动最简单的运动:匀速直线运动最简单的变速运动:匀变速直线运动 最简单的振动:简谐运动考点85 波的反射和折射 波的衍射和干涉 要求:Ⅰ 1.波面(波阵面):振动状态总是相同的点的集合;波线:与波面垂直的那些线。

2.惠更斯原理:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波的包迹就是新的波面; 3.(1)互不干扰原理;(2)叠加原理。

反射、折射、干涉:Δx = kλ处,振动加强;Δx =(2k + 1)λ/2处,振动减弱。

(3)衍射(产生明显衍射现象的条件) 4.波的干涉:(1)频率相同(2)现象:加强区与减弱区相互间隔(加强区永远加强,减弱区永远减弱)考点86 多普勒效应 要求:Ⅰ(1)现象:由于波源和观察者之间有相对运动,使观察者感到频率(音调)发生变化的现象。

结论:波源远离现察者,观察者接收频率减小;波源靠近观察者,观察者接收频率增大。

(2)应用:A 、利用发射波和接受波频率的差异,制成测定运动物体速度的多普勒测速仪。

B 、利用向人体血液发射和接收的超声波频率的变化,制成测定人体血流速度的“彩考点87 电磁振荡 电磁波的发射和接收 要求:Ⅰ 1)麦克斯韦电磁场理论:⑴变化的磁场产生电场;变化的电场产生磁场 ⑵推广:①均匀变化的磁场(或电场),会产生恒定的电场(或磁场)。

②非均匀变化的磁场(或电场),会产生变化的电场(或磁场)。

2)电磁波:电磁场由发生的区域在空间由近及远的传播就形成电磁波。

电磁波的特点:①电磁波是物质波,传播时可不需要介质而独立在真空中传播。

②电磁波是横波,磁场、电场、传播方向三者互相垂直。

③电磁波具有波的共性,能发生干涉、衍射等现象受变力力大小不变,方向改变→匀速圆周运动力大小、方向均改变→简谐运动力大小改变,方向不变→额定功率下的机车启动 受恒力:方向都不变直线→匀加速、匀减速直线运动 曲线→(类)平抛运动③电磁波可脱离“波源”而独立存在,电磁波发射出去后,产生电磁波的振荡电路停止振荡后,在空间的电磁波仍继续传播。

④电磁波在真空中的传播速度等于光在真空中的传播速度,c=3×108m/s。

3)赫兹的电火花实验证实了麦克斯韦电磁场理论。

⑴线圈上的感应电动势等于电容器两端的电压⑵电磁振荡的周期与频率2f= Array5)电磁波的波速:v = λ f同一列电磁波由一种介质传入另一种介质,频率不变,波长、波速都要发生变化。

6)电磁波的发射与接收⑴无线电波的发射a、要有效地发射电磁波,振荡电路必须具有如下特点:①要有足够高的振荡频率②振荡电路的电场和磁场必须分散到尽可能大的空间b、调制:电磁波随各种信号而改变的技术,调制分为两种:调幅(AM)和调频(FM)(2)无线电波的接收:a、调谐(选台):使接收电路发生电谐振的过程b、解调(检波):调制的逆过程(3)雷达:雷达系统由天线系统、发射装置、接收装置、输出装置及电源、计算机等组成。

雷达用微波波段,每次发射时间约百万分之一秒,结果由显示器直接显示。

发射端和接收端合二为一(不同于电视系统)。

考点88 电磁波谱电磁波及其应用要求:Ⅰ电磁波谱:波长由长到短排列(频率由低到高)顺序无线电波→红外线→可见光→紫外线→伦琴(X)射线→γ射线红橙黄绿蓝靛紫波长:由长到短(红光最容易衍射,条纹间距最大)频率:由低到高(能量由小到大)折射率:由小到大(紫光偏折最大,红光偏折最小)临界角:由大到小(紫光最容易发生全反射)在同种介质中的波速:由大到小1)无线电波2)红外线:一切物体都在辐射红外线(1)主要性质;①最显著的作用:热作用,温度越高,辐射能力越强②一切物体都在不停地辐射红外线(2)应用:红外摄影、红外遥感、遥控、加热3)可见光光谱(波长由长到短):红、橙、黄、绿、蓝、靛、紫①天空亮:大气散射②天空是蓝色:波长较短的光比波长较长的光更容易散射③早晨、傍晚天空为红色:红光的波长最长,容易绕过障碍物4)紫外线:(1)主要性质:化学作用;荧光效应(2)应用:激发荧光、杀菌消毒、促使人体合成维生素D5)伦琴(X )射线:原子内层电子受激跃迁产生 (1)主要性质:穿透能力很强, (2)应用:金属探伤 人体透视6)γ射线:原子核受激辐射(1)主要性质:穿透能力很强,能穿透几厘米的铅板(几十厘米厚混凝土) (2)应用:金属探伤7)太阳辐射的能量集中在可见光、红外线、紫外线三个区域,其中,黄绿光附近,辐射的能量最强(人眼对这个区域的电磁辐射最敏感) 考点89 光的折射定律 折射率 要求:Ⅰ 1)光的折射定律①入射角、反射角、折射角都是各自光线与法线的夹角! ②表达式:2211sin sin θθn n =③在光的折射现象中,光路也是可逆的 2)折射率光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率,用符号n 表示sin sin n θθ=大小n 是反映介质光学性质的一个物理量,n 越大,表明光线偏折越厉害。

相关主题