当前位置:文档之家› 集成电路晶圆测试基础

集成电路晶圆测试基础


载流子——可以自由移动的带电粒子。
电导率——与材料单位体积中所含载流子数 有关,载流子浓度越高,电导率越高。
电子空穴对
当T=0K和无外界激发时,导体中没有栽流子,不导电。当 温度升高或受到光的照射时,价电子能量增高,有的价电子 可以挣脱原子核的束缚,而参与导电,成为自由电子——本 证激发。
本征激发
半导体的基本知识
根据物体导电能力(电阻率)的不同,划分为导体、绝缘 体和半导体。 半导体的电阻率为10-3~109 cm。典型的半导体有硅 Si和锗Ge以及砷化镓GaAs等。 半导体的特点: 1)导电能力不同于导体、绝缘体; 2)受外界光和热刺激时电导率发生很大变化——光敏元件、 热敏元件; 3)掺进微量杂质,导电能力显著增加——半导体。
引言


集成电路按生产过程分类可归纳为前道测 试和后到测试;集成电路测试技术员必须 了解并熟悉测试对象—硅晶圆。 测试技术员应该了解硅片的几何尺寸形状、 加工工艺流程、主要质量指标和基本检测 方法;
硅片,是晶体材料的 重要组成部分,处于新材料发展的前沿。其主要 用途是用作半导体材料和利用太阳能光伏发电、 供热等。由于太阳能具有清洁、环保、方便等诸 多优势,在地壳中含量达27%的硅元素,为单晶 硅的生产提供了取之不尽的源泉。 非晶硅是一种直接能带半导体,也就是没有和周 围的硅原子成键的电子,这些电子在电场作用下 就可以产生电流,因而非晶硅可以做得很薄,还 有制作成本低的优点.
二极管按结构分有点接触型、面接触型二大类。 PN结面积小,结电容小, (1) 点接触型二极管
用于检波和变频等高频电路。
(2) 面接触型二极管
PN结面积大,用 于大电流整流电路。
2.2 晶圆

通过芯片制造工艺,在圆硅片上已经形成 了芯片阵列的硅圆片,被称为“晶圆”。 “晶圆”有别于硅片,通常把还没有经过 芯片制造工艺的原始圆硅片简称为“硅 片”。
N型半导体(电子型半导体)
在本征半导体中掺入五价的元素(磷、砷、锑 ) 多余电子, 成为自由电子 自由电子 +4 +4 +4 +4 +4 +5 +4 +4 +4 +5 +4 +4 返回 +4 +4
P型半导体(空穴型半导体)
在本征半导体中掺入三价的元素(硼)
空穴 空穴
+4 +4 +4
+4 +3 +4 +4

3.设计模型参数
• 利用微电子结构图组技术的期间测试结构来提 取设计模型参数。建立VLSI库单元特性的一个 关键,在于是否有一个可靠的,并能正确反映 其工艺的器件模型参数。
2.2.1 晶圆的表形构成

4.焊盘
• 传统的方法是把芯片进行封装后提供给用户使 用,为此,就必须把芯片上的功能电路与外部 连接,即芯片上把焊盘作为引线的压焊点,兼 做测试点
2.2.2 晶体管基本原理和结构
2.2.3集成电路的基本原理和结构

半导体集成电路有双极型集成电路和MOS 集成电路两大类。单片半导体集成电路是 通过许多道平面工艺,把许多有源器件、 无源元件和金属薄膜导线按集成设计要求 有序并规则地制作在同一块硅片(基片) 上,以达到各种性能指标,并能满足特定 功能条款的电路。
2.1.1 硅片制备与检测

3.基本检测项目
• 硅片的主要质量要求如表
2.1.1 硅片制备与检测

4.基本检测方法
• 通常,检测硅片缺陷的方法是先对硅片进行选 择性的化学/电化学腐蚀,再利用光学显微镜观 察其表面微结构和缺陷,做缺陷性质判断和计 数评估,这是一种常用的快速、低成本检测单 晶硅片缺陷的方法。
(1) 正向特性
正向区分为两段: 当0<V<Vth时,正 向电流为零,Vth称死 区电压或开启电压。 当V >Vth时,开始 出现正向电流,并按 指数规律增长。
硅二极管的死区电压Vth=0.5~0.8V左右, 锗二极管的死区电压Vth=0.2~0.3 V左右。
2.2.2 晶体管基本原理和结构

2.双极型晶体管
• 双极型器件有电子和空穴两种载流子参与导电。 双极型NPN是由一个NP结和一个PN结,以及 两个结中间一个共享的很窄的P型区而构成的 三端有源器件。
BJT的开关特性
vI=0V时: iB0,iC0,vO=VCE≈VCC,c、e极之间近似于开路, vI=5V时: iB0,iC0,vO=VCE≈0.2V,c、e极之间近似于短路,
BJT的开关条件
工作状态 条件 截 止 放 大
I CS


I CS
iB≈0
0 < iB <

iB >
发射结和集 发射结正偏, 发射结和集 偏置情况 电结均为反 集电结反偏 电结均为正偏 偏 集电极电 工 流 作 特 点 管压降
iC=ICS≈
iC ≈ 0
ic ≈ iB
VCC Rc
且不随iB增加 而增加 VCES ≈ 0.2~0.3 V
2.2.2 晶体管基本原理和结构

晶体管是构成集成电路的重要有源基础器 件。要理解集成电路的原理和结构,就必 须了解晶体管的工作原理和结构。半导体 集成电路的晶体管有双极型和MOSFET型 两大类。
2.2.2 晶体管基本原理和结构

1.PN结和二极管
2.2.2 晶体管基本原理和结构

PN结具有重要的单向导电整流特性,即PN 结只允许电流沿一个方向流动。正向偏置 时,导电性很好,PN结电流随外加电压增 大而呈指数规律快速增大;反向偏置时, 导电性极差,PN结最初电流几乎为零,随 着外加反向电压增大,达到某一个临界电 压时,电流才迅速增加。
2.2.1 晶圆的表形构成

1.硅衬底是制作集成电路芯片的衬底材料, 他可以是P型或N型的原始抛光硅片,也可 以是经过外延工艺的硅片,依据集成电路 的结构形式和制造工艺选定。
2.2.1 晶圆的表形构成
硅衬底是制作集成电路芯片的衬底材料,它 可以是P型或N型的原始抛光硅片,也可以 是经过外延工艺的硅片,依据集成电路的 结构形式和制造工艺选定。
则掺杂后载流子浓度为1016+1010,约为1016数量级,
比掺杂前载流子增加106,即一百万倍。
PN结的形成及特性 PN结的形成 PN结的单向导电性
PN结的形成
在一块本征半导体 两侧通过扩散不同的杂 质,分别形成N型半导体 和P型半导体。
+ 三价的元素
产生多余空穴
+ 五价的元素
产生多余电子
动画
2.1.1 硅片制备与检测

1.几何尺寸形状
• 硅片的几何形状为圆形薄片,圆硅片边缘有定 位边(或称“参考面”),短的次定位边(次 参考面)。
2.1.1 硅片制备与检测
• 通常,硅片的边缘会有倒角,不同直径的硅片 有不同宽度的倒角。硅片很硬脆,在晶圆制造 过程中,硅片边缘易破裂,会造成应力,产生 碎屑,所以硅片必须倒角。
因浓度差
多子的扩散运动
由杂质离子形成空间电荷区 空间电荷区形成内电场
内电场促使少子漂移
内电场阻止多子扩散
PN结的单向导电性
(1) PN结加正向电压
外加的正向电压,方 向与PN结内电场方向相反, 削弱了内电场。于是,内 电场对多子扩散运动的阻 碍减弱,扩散电流加大。 扩散电流远大于漂移电流, 可忽略漂移电流的影响, PN结呈现低阻性。P区的 电位高于N区的电位,称 为加正向电压,简称正偏。
2.1.2 半导体材料与特性

概述


Ge,只用于某些特殊器件和光电探测器,半导体级 的纯锗成本比纯硅高10倍。 Si一直是半导体工业和集成电路的主材料,其不可 替代性在于地球上Si元素及其丰富(占地壳27%), 仅次于氧
2.1.2 半导体材料与特性

硅的基本特性
• 硅有若干特性,硅的导电性可以由掺杂来控制, 常温下导电性主要由杂志来决定;

1.工艺监控参数
• (1)在工艺参数的监测中,最典型的微电子 测试结构是范德堡(VDP)测试结构,它主要 用于测量各种掺杂区域的薄层电阻。其测试结 构有圆形VDP,圆形栅极VDP、偏移方形十字、 大希腊十字形、小希腊十字形和正十字形六种, 其中,正十字形VDP测试结构经常被使用。
2.3.2 微电子测试结构图
微电子测试结构图
• (2)金属-半导体接触电阻测试结构。随着电 路结构尺寸越来越小。IC特征尺寸按比例因子 K减小,引线孔的面积按K2的关系缩小,则金 属-半导体接触电阻会以K2的速率增加。如何 正确的测定金属-半导体接触电阻或接触电阻率 成为了一个重要的问题。
微电子测试结构图

2.电路质控参数
动画
(2)PN结加反向电压
外加反向电压,方向与PN结内电场方向相同,加强 了内电场。内电场对多子扩散运动的阻碍增强,扩散 电流大大减小。此时PN结区的少子在内电场的作用下 形成的漂移电流大于扩散电流,可忽略扩散电流,PN 结呈现高阻性。 P区的电位低于N区的电位,称为加反 向电压,简称反偏。
动画
半导体二极管的结构
+4 +3 +4 +4
+4 +4 +4
返回
N型半导体的多数载流子为电子,少数载流子是空穴; P型半导体的多数载流子为空穴,少数载流子是电子。 例:纯净硅晶体中硅原子数为1022/cm3数量级,
10 在室稳下,载流子浓度为ni=pi=1010数量级,
掺入百万分之一的杂质(1/10-6),即杂质浓度 为1022*(1/106)=1016数量级,
半导体的共价键结构
硅和锗是四价元素,在原子最外层轨道上的四 个电子称为价电子。它们分别与周围的四个原子的 价电子形成共价键。 原子按一定规律整齐排列,形成晶体点阵后, 结构图为:
相关主题