当前位置:文档之家› MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究【中文摘要】随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。

与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。

在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。

4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。

本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。

本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。

通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。

研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG 作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。

本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。

用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。

通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。

该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。

本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。

首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。

通过FT-IR光谱分析、XRD衍射分析、热稳定性能分析、BET分析、SEM电镜分析、拉伸实验等测试分析,研究了纳米高岭土的改性效果和聚氨酯纳米复合材料的力学性能、耐热性等性能,以及纳米高岭土在聚氨酯基体中的分布情况。

结果表明,纳米高岭土的改性用超声插层法处理的效果较好;改性纳米高岭土的加入量为3%时,纳米高岭土以剥离形态嵌入到聚氨酯基体中,使PUE软硬段相分离程度增加,使材料增强增韧;加入量较多时,则开始出现片层形态且有团聚现象。

【英文摘要】With the development of economy and society, raising the environmental protection, the content of VOC or HAP in polyurethane products was restricted to using in several countries. The volatilization and vestigital of solvent were harmful for constructor and consumer. The traditional solvent-borne polyurethane materials were forbidden in some industries, for example, family decoration, textiles and clothing, and so on, waterborne polyurethane, non-solvent polyurethane and polyurethane-based nanocomposite as new materials were progressively know by people.There are two categories of aliphatic and aromatic in the field of polyurethane materials at present. The polyurethane materials which are synthesized by aliphatic isocyanates showanti-yellowing and good flexibility characteristics, being poor intensity and abrasion resistance than the aromatic. Thepolyurethane film is superior to TDI in the strength, abrasion resistance and flexibility where the polyurethane film are synthesized by 4,4-diphenyl methane diisocyanate (MDI), which is symmetrical in structure and exhibits the large molecular weight, saturated vapor pressure, low toxicity characteristics and lower price. In addition, the polyurethane film can be dried quickly, suggesting that it has broad market prospects.In the first chapter, MDI based polyurethane materials will be used as the main line, introducing about the progress of study on the polyurethane and their functional modification with the application of waterproof and breathable textile of the coating adhesive respectively. Further, we also introduced the progress of polyurethane nanocomposites, modification mechanism and the tendency of the future development. Then we introduced the current research of MDI water-based and solvent polyurethane materials, preparation and the industrial application respectively.In the second chapter, stable waterborne polyurethane (WPU) emulsion was synthesized from MDI, polyether diol, dimethylolpropionic acid (DMPA), and so on. The properties of WPU were characterized by FT-IR, particle size analysis, tensile testing, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and waterabsorption test. Then the emulsion microstructure of latest and one year later was researched by transmission electron microscope (TEM). The influences of types of polyether diol, chain extenders, hydrophilic chain extenders, andcross-linkers on the mechanical property, thermodynamic property, and water resistance of the prepared WPU dispersion were discussed. From the results, it can be concluded that when use MDI,1,4-BDO,4.0 wt% DMPA as the hard segment, the WPU emulsion, which used N220 as the soft segment, has a well stability, and the film has a lot of excellent feature, such as low water absorption, big elongation at break, very soft, non-stick and fullness; which used PTMG as the soft segment, the degree of hydrogen bonding, crystallinity and heat resistance of WPU were better than others.In the third chapter, silicone was used to modify MDI based WPU, and mono-component silicone modified WPU emulsion was synthesized through graft copolymerization. The polyurethane was characterized by HNMR and IR. The results of HNMR suggested that silicone has been received on the main chain of polyurethane while the thermal analysis demonstrated that the glass transition temperature of the polymer soft segment is reduced by adding silicone and increased in the glass transition temperature of the polymerhard segment, improving the micro-phase separation which perfected the separation of soft segment and hard segment and enhancing the heat of the polymer at low temperature region. The TEM indicated that the microstructure of the emulsion would be changed by adding silicone to some extent, where silicone was comb in polyurethane chains and silicone moved to the surface with the insertion of the hydrophobic silicon. The colloidal particles didn’t transform obviously and maintained the spherical structure although the reduction of the dispersion will lead to the increase in the size of latex particle. By comparing effects that several silicone modifier acted on MDI polyurethane emulsion, other additives dubbed to water-based fabric coating adhesive were added to the polyurethane emulsion which had been synthesized and modified and then they were applied to the fabric coating, investigating the properties of waterproof and moisture penetration. The plastic coating shows the properties of both waterproof and moisture penetration which could offset effectively the insufficient of the textiles in this field.In the fourth chapter, a novel polyurethane/organic modified kaolinite nanocomposite was prepared by in-situ intercalativestep-polyconsendition. First, nanokaolin as compositestuffing, which was intercalatived by oganic solvent, and then the micromolecule organic solvent was replaced by polyether to prepared polyether-nanokaolin complex, polyurethane nanocomposite was synthesized by the complex and isocyanate in the end. The modification result of nanokaolin, mechanical properties, heat resistance of nano-composite and the dispersion state of nano-filler in the composites were investigated, which was by FT-IR spectrum analysis, XRD, thermal stability, BET, SEM, tensile test, and so on. The results revealed that the intercalation rate of sonochemistry method was better, and when the content of modified nano-kaolin was 3 wt%, the composite has excellent properties. And the morphology of kaolinite was exfoliated in polyurethane matrix when the content of modified nano-kaolin was lower than 3 wt%, or else, the lamellar and agglomeration of nano-kaolin began to appear.【关键词】MDI 聚氨酯水性聚氨酯有机硅纳米复合材料【英文关键词】MDI polyurethane waterborne polyurethane siloxane nanocomposite【目录】MDI基聚氨酯材料的制备及性能研究摘要3-5Abstract5-7第一章文献综述10-25 1.1 水性聚氨酯及其功能改性研究进展10-13 1.1.1 共混改性10-11 1.1.2 共聚改性11-12 1.1.3 互穿聚合物网络技术12-13 1.2 MDI型水性聚氨酯的研究进展13-15 1.2.1 MDI型水性聚氨酯的研究13-14 1.2.2 MDI 型双组份水性聚氨酯的研究14 1.2.3 MDI型水性聚氨酯的改性研究14-15 1.3 水性聚氨酯在防水透湿纺织涂层胶中的研究进展15-16 1.3.1 织物防水透湿概述15 1.3.2 水性聚氨酯防水透湿作用机理15-16 1.3.2.1 微孔法15-16 1.3.2.2 无孔法16 1.3.3 水性聚氨酯防水透湿涂层胶的研究进展16 1.4 聚氨酯基纳米复合材料的研究进展16-20 1.4.1 纳米粒子对聚氨酯的改性作用机理17 1.4.2 聚氨酯基纳米复合材料的制备方法17-18 1.4.3 聚氨酯/层状硅酸盐纳米复合材料的研究18-19 1.4.4 聚氨酯/无机刚性粒子纳米复合材料的研究19-20 1.5 本课题的研究内容和意义20参考文献20-25第二章 MDI基聚醚型水性聚氨酯结构及性能的研究25-38 2.1 前言25 2.2 实验部分25-29 2.2.1 实验原料25-26 2.2.2 实验仪器26 2.2.3 化学反应示意图26-27 2.2.4 实验方法27 2.2.5 乳液及胶膜性能测试分析27-29 2.3 结果与讨论29-36 2.3.1 聚合物红外光谱分析29-30 2.3.2 聚醚软段类型对乳液外观及稳定性的影响30 2.3.3 聚醚软段类型对力学性能的影响30-31 2.3.4 聚醚软段类型对吸水率的影响31-32 2.3.5 软段类型对耐热性能的影响32-33 2.3.6 异氰酸酯硬段类型对水性聚氨酯的影响33-34 2.3.7 亲水基团DMPA含量对水性聚氨酯的影响34-35 2.3.8 扩链剂类型对水性聚氨酯的影响35-36 2.3.9 水性聚氨酯乳液的电镜分析36 2.4 本章小结36-37参考文献37-38第三章有机硅改性MDI型水性聚氨酯织物涂层胶的研究38-52 3.1 前言38 3.2 实验部分38-42 3.2.1 实验原料38-39 3.2.2 实验仪器39 3.2.3 实验方法39-40 3.2.4 SWPU的化学反应(以AEAPS为例)40-41 3.2.5 分析测试41-42 3.3 结果与讨论42-50 3.3.1 聚合物结构分析42-44 3.3.1.1 IR图谱分析42-43 3.3.1.2 ~1H-NMR图谱分析43-44 3.3.2 有机硅种类对WPU的热性能的影响44-45 3.3.3 对乳液性能的影响45-46 3.3.4 对胶膜力学性能的影响46-47 3.3.5 对胶膜吸水率和水接触角的影响47-48 3.3.6 改性前后的透射电镜图分析48 3.3.7 对基布耐水压和透湿量的影响48-50 3.4 本章小结50参考文献50-52第四章聚氨酯基纳米复合材料的制备与表征52-69 4.1 改性纳米高岭土的制备及其表征52-59 4.1.1 前言52 4.1.2 实验部分52-53 4.1.2.1 实验原料52 4.1.2.2 主要设备及仪器52-53 4.1.2.3 实验方法53 4.1.2.4 样品表征53 4.1.3 结果与讨论53-59 4.1.3.1 FT-IR光谱分析53-55 4.1.3.2 XRD衍射分析55-56 4.1.3.3 热稳定性能分析56-57 4.1.3.4 BET分析57-58 4.1.3.5 SEM电镜分析58-59 4.2 有机改性高岭土/聚氨酯纳米复合材料的制备与表征59-66 4.2.1 前言59-60 4.2.2 实验部分60-61 4.2.2.1 实验原料60 4.2.2.2 样品制备60 4.2.2.3 性能测试60-61 4.2.2.4 聚氨酯层状硅酸盐纳米复合材料结构图61 4.2.3 结果与讨论61-66 4.2.3.1 红外光谱分析61-62 4.2.3.2 X射线衍射图谱分析62-63 4.2.3.3 改性纳米高岭土含量对复合材料力学性能的影响63-64 4.2.3.4 热分析64-65 4.2.3.5 试样扫面电镜分析65-66 4.3 本章小结66参考文献66-69第五章结论69-71致谢71-72攻读硕士期间发表的论文和申请的专利72。

相关主题