中北大学课程设计说明书学生姓名:学号:学院:专业:题目:多产品离散型流水作业线系统仿真指导教师:2016年 06 月17日目录1、课程设计步骤 (4)1.1模型建立 (4)1.2参数设置 (5)1.3 模型运行 (10)1.4模型优化 (10)1.5数据统计 (11)2、总结 (12)3、参考文献 (13)生产系统建模与仿真》课程设计题目1. 题目运用Flexsim软件进行的多产品离散型流水作业线系统仿真2. 课程设计内容系统描述与系统参数:(1)一个流水加工生产线,不考虑其流程间的空间运输。
(2)有三类工件A,B,C分别以正态分布、均匀分布和三角分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,C进入队列Q3等待检验。
(按学号最后位数对应的仿真参数设置按照下表进行)对B进行检验,每件检验用时2分钟,操作工人labor3对C进行检验,每件检验用时3.5分钟。
(4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A 的合格率为65%,B的合格率为95%,C的合格率为85%,(5)工件A送往机器M1加工,如需等待,则在Q4队列中等待;B送往机器M2加工,如需等待,则在Q5队列中等待。
C送往机器M3加工,如需等待,则在Q6队列中等待。
(6)A在机器M1上的加工时间;B在机器M2上的加工时间,C在机器M3上的加工时间,按照下表对应进行。
(学号首位数对应的仿真参数设置按照下表进行)(5,1)分钟,装配完成后离开系统。
(8)如装配机器忙,则A在队列Q7中等待,B在队列Q8中等待,C在队列Q9中等待。
(9)连续仿真一天的系统运行情况,每个队列最大容量为1000。
3. 课程设计要求根据上述系统描述和系统参数,应用Witness仿真软件建立仿真模型并运行,查看仿真结果,分析各种设备的利用情况,发现加工系统中的生产能力不平衡问题,然后改变加工系统的加工能力配置(改变机器数量或者更换不同生产能力的机器),查看结果的变化情况,确定系统设备的最优配置。
(1)每位同学必须独立完成课程设计任务,对照学号最后一位选择参数,不得抄袭或找人代做,否则成绩以不及格记。
(2)课程设计说明书必须包括必要的文字描述、模型流程图、系统建立与运行过程中各环节的截图、模型代码和Excel格式的标准报告。
其中截图主要包括模型建立、主要参数设置、系统运行、统计数据的截图。
(3)课程设计说明书的装订顺序依次为封面、设计任务书、目录、正文、参考文献。
1课程设计步骤1.1 模型建立根据系统描述,通过对系统的分析,建正确的模型。
在标准实体栏中选择正确的实体,将其拖拽到正确的位置即可。
可设置一个发生器,在创建出发中设置工件A、B、C,九个暂存区用来存放等待的工件,一个暂存区存放已经加工完成的成品。
处理器一共有六台,三台用来检验工件是否合格,另外三台用来加工工件。
一个吸收器用来储存废品。
一台合成器用来装配产品。
实体建立完成后,下一步是根据临时实体的路径连接端口。
连接过程是:按住“A”键,然后用鼠标左键点击发生器并拖曳到暂存区,再释放鼠标键。
模型建立如图1.1所示图1.1建立模型1.2 参数设置参数设置是对模型中的各实体参数按照系统描述所示进行设置。
双击标准实体,就弹出其参数设置窗口,在窗口中根据系统描述选择正确选项后点确定即可。
(1)发生器1的参数设置如下:时间间隔为A正态分布(11,2)分钟,B 均匀分布(11,20),C三角分布(10,14,16),如图1.1所示,设置临时实体流表示工件离开分为三种,如图1.2,工件离开由不同颜色表示不同工件,通过触发器中创建触发设置,A黄色,B红色,C绿色。
如图1.3图1.1工件发生器设置图1.2工件临时实体流设置图1.3工件触发器设置(2)九个暂存区参数一致,最大容量为1000 。
如图1.4所示:图1.4暂存区的设置(3)处理器的1参数设置,操作工人1对A检验用时2分钟,操作工人2对B检验用时2分钟,操作工人3对C检验,用时3.5分钟。
如图1.5。
不合格的工件废弃,输送至吸收器;合格的工件送往后续加工工序,A的合格率为65%,在临时实体流中设置,如图1.6。
B的合格率为95%,设置如图1.7 。
C的合格率为85%,设置如图1.8 。
图 1.5检验1处理器设置图 1.6检验1的输出设置图1.7检验2的输出设置图1.8检验3的输出设置(4)不合格废品输送到吸收器,设置如图1.9所示:图1.9吸收器的设置(5)对加工机器进行设置,A在机器M1上的加工时间对数正态分布(5,2),如图1.10;B在机器M2上的加工时间对数正态分布(11,1),如图1.11,C在机器M3上的加工时间对数正态分布(10,1),如图1.12。
图1.10机器M1的处理器设置图1.11机器M2 的的处理器设置图1.12机器M3的处理器设置(6)对装配的合成器进行设置,需时为正态分布(5,1)分钟,如图1.13。
成品设置成蓝色,设置如图1.14.装配完成后离开系统至暂存区20.图1.13装配器M4的设置图1.14装配器M4的设置1.3模型运行设置系统运行一天,1440分钟,运行情况如图1.15所示。
加工完成工件暂存在暂存区20内,完成28个;Q8、Q9均处于等待状态,Q8有14个工件在排队,Q9有5个工件排队。
图1.15模型运行1.4 模型优化观察运行结果,发现工件A生产速度较B、C慢,导致装配机M4工作时,Q8、Q9常处于等待状态。
提高A生产速度,可调整工件A的进入系统时间间隔。
将工件A 进入系统时间正态分布(11.2)改为(10,2),可提高生产速度。
1.5数据统计将运行结果生成excel报告,如表1.1所示表1.1 数据统计2、总结在这次课程设计中,使用Flexsim软件进行系统仿真建模,Flexsim软件模型为3D形式,在设计系统时更加直观形象,中文版本使操作更加简单。
在建立模型中,发生器可通过发生器选项设置到达时间,通过临时实体流选项卡设置输出,通过触发器选项卡设置输出时不同实体的状态。
处理器可通过临时实体流设置输出,触发器设置不同实体状态。
生成数据为EXCEL表格模式,方面操作,直观形象。
系统运行中发现由于工件A加工速度慢,导致Q8.Q9中的工件B、C处于等待状态,拖慢系统速度。
可通过改变A的到达时间或增加加工A的机器改进。
参考文献[1] 张晓萍,刘玉坤主编. 系统仿真软件Flexsim 3.0实用教程. 北京:清华大学出版社。
[2] 张晓萍,石伟,刘玉坤主编. 物流系统仿真. 北京:清华大学出版社。
《生产系统建模与仿真》课程设计题目1. 题目运用witness软件进行的多产品离散型流水作业线系统仿真2. 课程设计内容系统描述与系统参数:(1)一个流水加工生产线,不考虑其流程间的空间运输。
(2)有两类类工件A,B分别以正态分布(11,2)、三角分布(10,14,16)的时间间隔进入系统,A进入队列Q1, B进入队列Q2等待检验。
(3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。
(4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为85%,B的合格率为95%。
(5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。
(6)A在机器M1上的加工时间(5.2);B在机器M2上的加工时间(11,1)。
(7)一个A、一个B在机器M3上装配成产品,需时为正态分布(7,2)分钟,装配完成后离开系统。
(8)如装配机器忙,则A在队列Q5中等待,B在队列Q6中等待。
(9)连续仿真一天的系统运行情况,每个队列最大容量为1000。
目录1、元素的定义 (16)2、模型的建立 (16)2.1 初步建立模型 (16)2.2 零件的细节设计 (17)3、模型的运行 (21)4、数据的统计 (21)5、模型的改进 (22)6、总结 (22)7、参考文献 (23)1.元素的定义2、模型的建立2.1 初步建立模型如图2.1所示,建立模型,并对元素可视化设置。
图2.1建立模型2.2 零件的细节设计(1)GJ1到达时间间隔正态分布(11,2)、如图2.2。
输出到Q1,如图2.3 。
GJ2到达时间间隔三角分布(10,14,16),如图 2.4,输出到Q2,如图2.5图2.2 GJ1的设置图2.2 GJ1输出设置图2.3 GJ2的设置图2.4 GJ2的输出设置(2)对检验工人1进行设置,加工时间为2分钟,如图2.5。
合格率为85%,输入输出规则如图2.6. 检验工人2加工时间为2分钟,设置如图2.7,合格率为95% ,输入输出如图2.8 。
不合格工件离开系统,输出到ship。
图 2.5 工人1的设置图 2.6 工人1的输入输出设置图2.7 工人2的设置图2. 8 工人2的输入输出设置(3)对加工机器进行设置,A在机器M1上的加工时间(5.2);如图2.9,输入输出设置如图2.10。
B在机器M2上的加工时间(11,1),如图2.11,输入输出如图2.12图2.9 M1的细节设置图2.10M1输入输出设置图2.11 M2的细节设置图2.12 M2的输入输出设置(4)对装配机器M3进行设置。
一个A、一个B在机器M3上装配成产品,需时为正态分布(7,2)分钟,设置如图2.11 。
装配完成后离开系统,输出到ship,如图2.12。
图2.11 M3的细节设置图2.12 M3的输入输出设置(5)对队列Q进行设置,最大容量为1000,如图2.13。
图 2.13 队列的设置3.模型的运行模型运行情况如图3.1.。
黄色方块表示空闲,绿色表示忙。
运行一天1440分钟后,工人1、2均处于空闲状态,加工M1空闲,M2忙,Q5有等待工件8个,装配M3忙。
图3.1模型运行4.数据的统计全选模型,点击菜单reports中的statistics,生成数据表格,如表4.1。
生成图表如表4.2表4.1 数据统计结果表4.2 数据统计的分布图5.模型的改进根据统计结果可知,机器的空闲率较高,尤其是Labor1和labor2 的繁忙程度低,导致生产力不平衡以及生产率低下,故对系统的以下参数进行调整:调整机器的加工时间,使得机器A在机器M1上的加工时间为正态分布(18,1),B在M2上的加工时间为正态分布(20,2),一个A和一个B在机器M3上的装配时间为为正态分布(18,2),检验工人labor1和labor2的检验时间均为正态分布(19,1),通过参数调整,来提高生产系统的效率,提高后生产统计如表4.3表4.3 优化后的数据统计6.总结这次课程设计中,应用witness软件进行多产品离散型流水作业线仿真,通过一系列细节设计,最后运行模型时发现了工件2生产速度慢的问题,导致工件1存在排队现象,拖慢生产进度。