当前位置:文档之家› 动量守恒定律单元检测附答案

动量守恒定律单元检测附答案

动量守恒定律单元测试一.选择题(共14小题)1.(多选)质量为m的物块甲以3m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4m/s的速度与甲相向运动,如图所示,则()A.甲、乙两物块在弹簧压缩过程中,动量守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1m/s时,物块乙的速率可能为2m/s,也可能为0D.物块甲的速率可能达到5m/s2.如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为()A.v=,I=0 B.v=,I=2mv0C.v=,I=D.v=,I=2mv03.一物体做直线运动的x﹣t图象如图所示,其中OA和BC段为抛物线,AB段为直线并且与两段抛物线相切.物体的加速度、速度、动能、动量分别用a、v、E k、P表示,下列表示这些物理量的变化规律可能正确的是()A.B.C.D.4.如图所示,质量为m 的小滑块(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的 B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在 B 点需给物体的瞬时冲量最小应是()A.2m B.m C.D.4m5.(多选)将质量相等的三只小球A、B、C从离地同一高度以大小相同的初速度分别上抛、下抛、平抛出去,空气阻力不计,那么,有关三球动量和冲量的情况是()A.三球刚着地时的动量大小相同B.三球刚着地时的动量各不相同C.三球从抛出到落地时间内,受重力冲量最大的是A球,最小的是B球D.三球从抛出到落地时间内,受重力冲量均相同6.(多选)测量运动员体能的装置如图所示,质量为m1的运动员将绳拴在腰间并沿水平方向跨过滑轮(不计滑轮质量及摩擦),下端悬吊一个m2的重物,人用力向后蹬传送带,而人的重心不动,使传送带以v的速率向后运动,则不正确的是()A.人对传送带不做功B.传送带对人的冲量等于零C.人对传送带做功的功率m2gv D.人对传送带做功的功率m1gv7.(多选)如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上.若m A=3m B,则下列结果正确的是()A.若轻弹簧对A、B做功分别为W1和W2,则有W1:W2=1:1B.在与轻弹簧作用过程中,两木块的速度变化量之和不为零C.若A、B在空中飞行时的动量变化量分别为△p1和△p2,则有△p1:△p2=1:1 D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B 两木块的水平位移大小之比为l:38.如图所示,在光滑水平面上放置一个质量为M的滑块,滑块的一侧是一个1/4弧形凹槽OAB,凹槽半径为R,A点切线水平.另有一个质量为m的小球以速度v0从A点冲上凹槽,重力加速度大小为g,不计摩擦.下列说法中正确的是()A.当时,小球能到达B点B.如果小球的速度足够大,球将从滑块的左侧离开滑块后落到水平面上C.当时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大D.如果滑块固定,小球返回A点时对滑块的压力为9.在光滑的水平地面上水平放置着足够长的质量为M的木板,其上放置着质量为m带正电的物块(电量保持不变),两者之间的动摩擦因数恒定,且M>m,空间存在着足够大的方向垂直于纸面向里的匀强磁场,某时刻开始它们以大小相同的速度相向运动,如图,取向右为正方向,则下列图象可能正确反映它们以后运动的是()A.B.C.D.10.(多选)如图所示,轻弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m的小物块从槽高h处开始自由下滑,下列说法正确的是()A.在下滑过程中,物块的机械能守恒B.在下滑过程中,物块和槽的动量守恒C.物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,不能回到槽高h处11.如图,质量为3kg的木板放在光滑水平面上,质量为1kg的物块在木板上,它们之间有摩擦力,木板足够长,两者都以4m/s的初速度向相反方向运动,当木板的速度为2.4m/s时,物块()A.加速运动B.减速运动C.匀速运动D.静止不动12.质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等.当两颗子弹均相对于木块静止时,下列判断正确的是()A.木块静止,d1=d2B.木块向右运动,d1<d2C.木块静止,d1<d2D.木块向左运动,d1=d2二.实验题(共1小题)13.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A 点放置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下:①在小滑块a上固定一个宽度为d的窄挡光片;②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上;④细线烧断后,a、b瞬间被弹开,向相反方向运动;⑤记录滑块a通过光电门时挡光片的遮光时间t;⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a;⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h及平台边缘铅垂线与B点之间的水平距离S b;⑧改变弹簧压缩量,进行多次测量.(1)该实验要验证“动量守恒定律”,则只需验证=即可.(用上述实验数据字母表示)(2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为.(用上述实验数据字母表示)三.计算题(共4小题)14.如图所示,左端带有挡板P的长木板质量为m,置于光滑水平面上,劲度系数很大的轻弹簧左端与P相连,弹簧处于原长时右端在O点,木板上表面O点右侧粗糙、左侧光滑.若将木板固定,质量也为m的小物块以速度v0从距O点L的A点向左运动,与弹簧碰撞后反弹,向右最远运动至B点,OB的距离为3L,已知重力加速度为g.(1)求物块和木板间动摩擦因数μ及上述过程弹簧的最大弹性势能E p.(2)解除对木板的固定,物块仍然从A点以初速度v0向左运动,由于弹簧劲度系数很大,物块与弹簧接触时间很短可以忽略不计,物块与弹簧碰撞后,木板与物块交换速度.①求物块从A点运动到刚接触弹簧经历的时间t;②物块最终离O点的距离x.15.如图所示,一条不可伸长的轻绳长为R,一端悬于天花板上的O点,另一端系一质量为m的小球(可视为质点).现有一个高为h,质量为M的平板车P,在其左端放有一个质量也为m的小物块Q(可视为质点),小物块Q正好处在悬点O的正下方,系统静止在光滑水平面地面上.今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时刚好与Q发生正碰,碰撞时间极短,且无能量损失.已知Q离开平板车时的速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?16.如图所示,在光滑的水平地面的左端连接一半径为R的光滑圆形固定轨道,在水平面质量为M=3m的小球Q连接着轻质弹簧,处于静止状态.现有一质量为m的小球P从B点正上方h=R高处由静止释放,求:(1)小球P到达圆形轨道最低点C时的速度大小和对轨道的压力;(2)在小球P压缩弹簧的过程中,弹簧具有的最大弹性势能;(3)若球P从B上方高H处释放,恰好使P球经弹簧反弹后能够回到B点,则高度H的大小.17.如图,质量为M=2.0kg的小车静止在光滑水平面上,小车AB部分是半径为R=0.4m 的四分之一圆弧光滑轨道,BC部分是长为L=0.2m的水平粗糙轨道,动摩擦因数为μ=0.5,两段轨道相切于B点.C点离地面高为h=0.2m,质量为m=1.0kg的小球(视为质点)在小车上A点从静止沿轨道下滑,重力加速度取g=10m/s2.(1)若小车固定,求小球运动到B点时受到的支持力大小F N;(2)若小车不固定,小球仍从A点由静止下滑;(i)求小球运到B点时小车的速度大小v2;(ii)小球能否从C点滑出小车?若不能,请说明理由;若能,求小球落地与小车之间的水平距离s.物理答题卡一选择题1 2 3 4 5 6AC B C A AC ABD7 8 9 10 11 12BD C B CD A C13(1)m b s b(2)14解:(1)研究物块从A点开始运动至B点的过程,由动能定理有:﹣μmg(4L)=0﹣解得:μ=研究物块从弹簧压缩量最大处至B点的过程,由功能关系有:﹣μmg(3L)=0﹣E p.解得:E p=(2)①设物块在木板上运动的加速度大小为a1,则有:μmg=ma1解得:a1=μg(方向水平向右)设木板运动的加速度大小为a2,则有:μmg=ma2解得:a2=μg(方向水平向左)由几何关系有:(v0t﹣)﹣=L解得:t1=,t2=(舍去)②设物块刚接触弹簧时,物块和木板速度分别是v1、v2,则有:v1=v0﹣a1t1,v2=a2t1物块和木板碰撞交换速度后,在摩擦力作用下分别做加速和减速运动,设运动的时间为t、达到共同速度为v,则有:v=v2+a1t,v=v1﹣a2t解得:v1=,v2=,v=上述过程由功能关系有:﹣μmg(L+x)=﹣解得:x=L15解:(1)设小球即将与物块Q碰撞前的速度为v0,小球由初始位置摆动到最低点的过程中,由机械能守恒定律可得:mgR(1﹣cos60°)=解得:设碰撞后小球速度为v1,物块Q速度为v2,由于小球与物块Q是弹性碰撞,所以碰撞过程满足机械能守恒和动量守恒,取向右为正方向,则得:mv0=mv1+mv2两式联立可得:v 1=0,即:速度交换,小球速度变为零,Q获得速度v0.设Q离开平板车时的速度大小为v,则平板车速度为,物块Q在小车上滑行的过程中,由动量守恒定律可得:又M:m=4:1可得:(2)设平板车的长度为L,由题意可得物块Q在小车上滑行时,一部分动能转化为系统的内能,所以有:可得:(3)由题意可得,以地面为参考系,物块Q在小车上做匀减速直线运动,设其加速度为a,运动的位移为s1,离开平板车后做平抛运动,运动时间为t,水平位移为s2.由牛顿运动定律可得:由运动学公式得Q离开平板车后做平抛运动,则有,s2=vt联立可得:物块运动的水平位移为由于小球与物块Q碰后处于静止状态,所以小物块Q落地时距小球的水平距离即为物块运动的水平位移:16解:(1)小球P从A运动到C的过程,根据机械能守恒得:,又h=R,解得:在最低点C处,根据牛顿第二定律得:,解得:F N=5mg,根据牛顿第三定律可知,小球P对轨道的压力大小为5mg,方向竖直向下,(2)弹簧被压缩过程中,当两球速度相等时,弹簧具有最大弹性势能,以向右为正,根据系统动量守恒得:mv C=(m+M)v,根据机械能守恒定律得:联立解得:(3)球P从B上方高h处释放,到达水平面速度为v0,则有:mg(H+R)=弹簧被压缩后再次恢复到原长时,设小球P和Q的速度大小分别为v1和v2,根据动量守恒定律有:mv0=﹣mv1+Mv2根据机械能守恒定律有,要使P球经弹簧反弹后恰好回到B点,则有mgR=,联立解得:H=3R17(1)小球从A运动到B过程,根据动能定理得:mgR=mv B2﹣0,在B点,由牛顿第二定律得:F N﹣mg=m,解得:F N=30N;(2)(i)若不固定小车,滑块到达B点时,小车的速度最大为v max,小球与小车组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得:mv2﹣Mv max=0,解得:==,v2=2v max,由机械能守恒定律得:mgR=mv22+Mv max2,解得:v max=m/s,v2=m/s;(ii)假设小球能从C点滑出,设小球滑到C处时小车的速度为v,则小球的速度为2v,设小球距离为s;根据能量守恒定律得:mgR=m•(2v)2+Mv2+μmgL,解得:小车的速度v=﹣1m/s,小球的速度为2m/s;若假设成立,小球滑出小车后做平抛运动,则有:h=,解得:t=0.2s;小球的水平位移为x1=2×0.2=0.4m小车的水平位移为x2=1×0.2=0.2m那么小球落地与小车之间的水平距离s=0.4+0.2=0.6m。

相关主题