当前位置:文档之家› 如何正确选择步进电机和伺服电机

如何正确选择步进电机和伺服电机

步进电机和伺服电机的区别与正确选择在行走定位系统中,常用的电机就是步进电机和伺服电机两种,其中步进电机主要有2相、5相和微步进几种,伺服电机主要有交流伺服电机和直流伺服电机,以及有刷和无刷电机的分类。

2相、5相和微步步进电机主要是驱动器所表现出来解析度不同, 2相步进系统电机每转最细可分为400 格, 五相则为1000 格, 微步进则可从200 ~ 5000(或以上)格, 表现出来的特性以微步进最好, 加减速时间较短, 动态惯性较低.AC 和DC 伺服电机主要的分别为DC伺服比AC伺服电机多了一个碳刷, 会有维护上的问题, 而AC 伺服电机因没有碳刷, 所以后续并不会有太大维护上的问题. 所以基本上来说AC伺服系统是较DC 伺服系统为优, 但DC 伺服系统主要的优势则是价位上比AC 伺服系统较便宜. 而此两种系统的控制精度皆为相同.以下为伺服电机与步进电机的特征介绍步进电机:◎特征●具保持力由于步进电机在激磁状态停止时,具有很大的保持力,因此即使不使用机械式刹车亦可以保持停止位置(具有激磁状态停止时,与电机电流成比例的保持力)。

在停电时步进电机不具有保持力,因此停电时若需有保持力,请使用附电磁刹车机种。

藉由电机的高精度加工,可实现步进电机高精度定位功能。

解析度是取决于电机的构造,一般的HYPRID型5相步进电机为1步级0.72°精度是取决于电机的加工精度而定,无负载时的停止精度误差为±3分(±0.05°)。

● 角度控制、速度控制简单步进电机为与输入的脉波成正比,一次以一步级角运转(0.72度)。

●高转矩,高响应性步进电机虽然体积小但在低速运转时皆可获得高转矩输出。

因此在加速性、响应性、频繁的起动及停止皆可发挥很大的威力。

●高分解能、高精度定位5相步进电机在全步级时0.72°(1回转500分割),半步级时0.36°(1回转1000分割)。

停止定位精度为±3分(±0.05°),所以并不会有角度累积误差。

●步进电机与AC感应或伺服电机等,有相当大的差异,并具有下列的特征:‧与输入脉波同期,以步级方式运转。

‧以开回路方式即可完成高精度定位。

‧起动、停止的响应性优越。

‧停止时不会有累积角度误差。

‧因为电机构造简单,所以保养容易。

‧要驱动步进电机必须要有控制器,只需向驱动器输入脉波即可简单的以开回路方式进行高精度定位控制。

伺服电机:◎特征●高信赖性(闭回路)AC伺服电机由电机与编码器、驱动器三部分构成,驱动器的作用是将输入脉波与编码器的位置、速度情报进行比较后来对驱动电流进行控制。

由于AC伺服电机可以透过编码器的位置、速度情报随时检出电机的运转状态,因此,即使是在电机停止时也会向控制器输出警示信号,所以能随时检出电机的异常情况。

●AC伺服电机的长处‧能获得定位结束信号。

‧发生过负载等异常情况时,因会输出警示信号,所以能在设备发生异常时报警。

‧因能依据负载状态来控制电流,所以效率高、电机发热程度低。

在如左图所示的机构上使用时,可充分发挥AC伺服电机的特长。

‧系在X轴运转完毕后再进行Y轴运转的驱动模式。

此种情况下,因能输出X轴运转完毕的信号(END),所以非常方便。

‧假如X轴发生异常停止时,有可能会影响到其他机构。

但因为会输出通知异常情况的警示信号,所以非常方便。

●高速‧高转矩步进电机的特性为在低速领域时能输出大转矩,但在高速领域时则转矩会逐渐下降。

AC伺服电机与步进电机相比,即使在高速领域亦能获得稳定的高转矩。

所以,按照长行程进行高速移动时适合使用AC伺服电机。

●减速机型从与一般AC电机相同的分离型简易减速机到高强度、高精度的一体型减速机,一般备有种类丰富的减速机型伺服电机标准产品。

步进电机和伺服电机的性能区别低频特性不同步进电机在低速时易出现低频振动现象。

振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。

这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。

当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(fft),可检测出机械的共振点,便于系统调整。

矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600rpm。

交流伺服电机为恒力矩输出,即在其额定转速(一般为2000rpm或3000rpm)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

过载能力不同步进电机一般不具有过载能力。

交流伺服电机具有较强的过载能力。

以松下交流伺服系统为例,它具有速度过载和转矩过载能力。

其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。

步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。

交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。

交流伺服系统的加速性能较好,以松下msma400w交流伺服电机为例,从静止加速到其额定转速3000rpm仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。

但在一些要求不高的场合也经常用步进电机来做执行电动机。

所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机分三种:永磁式(pm),反应式(vr)和混合式(hb)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。

在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。

它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。

这种步进电机的应用最为广泛。

1、如何正确选择伺服电机和步进电机主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。

供电电源是直流还是交流电源,或电池供电,电压范围。

据此以确定电机和配用驱动器或控制器的型号。

2、选择步进电机还是伺服电机系统?其实,选择什么样的电机应根据具体应用情况而定,各有其特点。

请见下表,自然明白。

3、如何配用步进电机驱动器?根据电机的电流,配用大于或等于此电流的驱动器。

如果需要低振动或高精度时,可配用细分型驱动器。

对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。

4、2相和5相步进电机有何区别,如何选择?2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。

5相电机则振动较小,高速性能好,比2相电机的速度高30~50%,可在部分场合取代伺服电机。

5、何时选用直流伺服系统,它和交流伺服有何区别?直流伺服电机分为有刷和无刷电机。

有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。

因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。

控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。

电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。

交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。

大惯量,最高转动速度低,且随着功率增大而快速降低。

因而适合做低速平稳运行的应用。

6、使用电机时要注意的问题上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。

4)一定要搞清楚接地方法,还是采用浮空不接。

5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。

相关主题