当前位置:文档之家› 管壳式换热器的设计要点

管壳式换热器的设计要点

管壳式换热器的设计要点换热器的设计过程包括计算换热面积和选型两个方面。

有关换热器的选型问题,前面已经讲过了,下面主要介绍管壳式换热器的设计要点及如何分析计算结果、调整计算,而设计出满足工艺需要的、传热效率高的换热器。

11.1设计计算的基本模型及换热器的性能参数换热器的性能主要是通过下列公式来描述的。

a.冷、热两流体间热量平衡Qreq=(WCpΔT)hot=(WCpΔT)coldW--流体质量流量Cp--流体的比热hot--热流体cold--冷流体ΔT--进出口温度差b.传热率方程Qact=(A)(ΔTm)(1/ΣR)ΣR=(1/hi)o+(1/ho)o+(Rf)o+(Rw)oΣR--总热阻A--传热面hi、ho--分别为两流体的传热膜系数Rf--两流体的污垢热阻Rw--金属壁面热阻ΔTm--平均温度差O--通常换热计算以换热管外表面为基准c. 传热率的估算Qact≥Qreqd. 对压力降的限制条件(ΔPi)act≤(ΔPi)allow(ΔPo)act≤(ΔPo)allowΔP--压力降下标i表示管内下标o表示管外11.2 换热器的计算类型换热器的计算类型常分为设计计算和校核计算两大类。

换热器计算一般需要三大类数据:结构数据、工艺数据和物性数据,其中结构数据的选择在换热器中最为重要。

在管壳式换热器的设计中包含有一系列的选择问题,如壳体型式、管程数、管子类型、管长、管子排列、折流板型式、冷热流体流动通道方式等方面的选择。

工艺数据包括冷、热流体的流量、进出口温度、进口压力、允许压降及污垢系数等。

物性数据包括冷、热流体在进出口温度下的密度、比热容、粘度、导热系数、表面张力。

a.设计计算 Design设计计算就是通过给定的工艺条件,来确定一台未知换热器的结构参数,并使其结构最优、尺寸最小。

对设计计算应先确定下列基本的几何参数:--管长--管间距--流向角--换热管外径及管壁厚b.校核计算 Rating校核计算就是评估一台已知换热器的传热性能,即通过校核设备的几何尺寸来看其是否能满足传热要求。

校核计算应已知下列基本的几何参数:--管程数--壳内径/管数--折流板间距/折流板数--管长/管间距--流向角--管内径/管壁厚11.2.1设计元素的选取设计计算时应考虑下列的几个基本设计元素:--壳体型式:TEMAE,F,G,J,K,X。

--壳内径:通常最大为2米。

--换热管几何尺寸:光管、翅片管管径(19mm,25.4mm等)管长系列(3m,5m,6m,7.2m等)--管子排列角:30°,60°,45°,90°--管间距:1.25 ~ 1.50倍的管子外径--折流板型式:单圆缺、双圆缺、管窗内不排管及为防止管子振动而加的支承板。

11.3 最终计算结果的分析目前,换热器计算常用的计算软件为美国的HTRI和英国的HTFS,这两大软件均为在国际上享有盛誉的传热设备专用计算软件。

当设计计算结束后,如何根据实际的工况,来判断计算结果是否满足要求,出现问题后如何解决,这对设计者来说都是很重要的,在评价最终设计计算时应考虑并校核以下各项。

11.3.1 总体设计尺寸细长型的换热器比短粗型要经济,通常情况下管长和壳径之比为5 ~ 10,但有时根据实际需要,长、径之比可增到15或20,但不常见。

对立式热虹吸再沸器,要控制其长、径比在3 ~ 10之内。

11.3.2 热阻大小首先根据流体的物系及实际经验来推断一下传热系数值是否合理,应特别注意管内雷诺数的大小。

在层流流动(管侧Re<2000,壳侧Re<300)和过渡区流动中,应使用分段计算的方式(HTFS程序无此功能),以确保传热系数值计算的正确。

在评估计算结果的同时,应考虑程序计算的精确度。

如果热阻在管侧和壳侧分布平衡,则该设计是好的,如果一侧热阻值过大,应该分析原因,分析管、壳侧冷、热流体的分布是否合理,如果是由于某一侧污垢系数过大而引起的,则可不必进一步修改原设计。

11.3.3 设计余量换热器设计计算时设计余量值的大小取决于计算精度、实际经验及对现场的操作控制等。

例如:对冷却水换热器,当水流速大于1.5m/s时,没必要给出过大的设计余量,过大的余量反而会造成水流速的降低。

但对层流和过渡区流动,由于计算精度不好,故需要给出较大的设计余量,通常需要在考虑了传热阻力值的大小和程序的计算精度后决定。

对再沸腾器,过大的设计余量反而是无益的,特别是在设备运转初期,会发生如控制困难等操作问题。

另外,有些设计计算,为了满足允许压降值的限制,可能会造成设计余量较大,此时应根据实际经验来判定计算结果是否正确或对允许压降值的大小作适当的调整。

11.3.4 压降的利用和分布允许压降必须尽可能加以利用,如果计算压降与允许压降有实质差别,则必须尝试改变设计参数。

在校核了计算所得压降值是否小于允许值之后,应对压降的分布作进一步的校核,这其中包括有进、出口接管处压降、错流和管窗流的压降,压力降必须大部分分布在换热率高的地方,如横掠管束的错流流动处;如果在接管或管窗处的压降占总压降的比例较大,应考虑增大接管尺寸及折流板间距。

一般对进、出口接管的压降希望控制在总压降的3 0%左右。

特别对有轴向接管的换热器,接管部分的压降最好控制在总压降的30%以下,否则会造成管子进口处的偏流。

为防止物流对壳程入口处的管子进行冲击,引起振动和腐蚀,一般均在换热器壳程进口处设置防冲板或分布器,在计算压降时要有所考虑。

另一个必须记住的事实是,允许压降是人为给定的,所以,如果在设计中允许压降得到了充分利用,而增加一点压降会增加很大的经济性,则应再行设计并考虑增加允许压降的可能性。

11.3.5 流速需校核管子进出口处、壳侧进口处和接管内的流速。

一般来说流体流速在允许压降范围内应尽量选高一些,以便获得较大的换热系数和较小污垢沉积,但流速过大会造成腐蚀并发生管子振动,而流速过小则管内易结垢。

对冷却水系统,设计计算时可参考下表中推荐的值(碳钢管)。

如果冷却水的流速低于上表中的最小流速,最好征得工艺工程师的同意增大允许压降或变化冷却水的流率。

对冷却水以外的单相和两相流用ρv2值判断。

对壳侧进口流速,按TEMA规定ρv2值不能超过5950 Kg/MS2(碳钢管)。

对管窗内不排管换热器,管窗流速应为错流速度的2 ~ 2.5倍,气体和蒸汽的流速可在8 ~ 30m/s之间。

11.3.6 壳侧流路分析HTRI程序在计算结果中对壳侧各流路给出了较详细的分析,可以参考下表中给 A,B,C, E,F流的推荐值。

流路A--折流板管孔和管子之间的泄漏流路;流路B--错流流路;流路C--管束外围和壳内壁之间的旁流流路;流路E--折流板与壳内壁之间的泄漏流路;流路F--管程分程隔板处的中间穿流流路。

最大限度地加大B-stream(错流),减少泄漏流,而事实上漏流不可能也不必要被全部阻止,因为安装换热器时总需要有间隙。

11.3.7对折流板的设计分析单圆缺和双圆缺折流板为管壳式换热器中常用的折流板型式,换热器中折流板的布置对设计计算有很大影响,一般从下面几各方面来检查原设计是否合理。

a.从流体流动、传热和污垢系数等方面考虑,最好将折流板的圆缺高度控制在壳体直径的20 ~ 30%,而板间距则控制在壳体直径30 ~ 50%之间,并不应小于50mm。

b.避免大圆缺小间距或小圆缺大间距的设计。

应优化选取折流板圆缺的大小和板间距大小,通常β值(折流板圆缺修正系数)最好在0.9 ~ 0.92之间。

c.除了管窗内不排管以外,流体的错流速度和在管窗内的流动速度不应相差太大,流体在 X-flow 和 Window 内的速度大并且越接近越好。

d.如果壳侧压降受到允许压降的限制,考虑使用双圆缺折流板,若还是不行,考虑变化壳体型式,选用TEMA的J、G、H、X型壳体。

11.3.8 有效平均温差在HTRI程序中是这样描述有效平均温差的:EffectiveMTD=(LMTD)(F)(DELTA)其中:LMTD为对数平均温差F=(TUBE)(BAFFLES)(F/G)(HOT/COLD)TUBE:即Ft,是对管侧多管程流动的修正系数。

通常设计计算时应保证Ft大于0.8。

当Ft小于0.8时,换热器的经济效益是不合理的,此时应另选其它流动型式,以提高 Ft值。

如:增加管程数或壳程数,或着用几台换热器串联,必要时亦可调整温度条件。

但在特殊情况下,如温度有0.5 ~ 1.0°C交叉时,Ft=0.75,也能接受。

BAFFLE:即折流板数修正系数。

当折流板数较少时,壳侧流体的混合流动性能较低,故需进行修正。

通常此值等于1.0。

DELTA: 温度变形系数。

这个系数是用来计算E流对温度差的影响大小的。

设计计算时希望δA>0.8,若δA<0.8,应考虑采用E流路小的折流板型式,也可增加换热器的串联数。

HOT/COLD:是对由于物性参数变化而造成的总传热系数变化的修正,通常为0.98~1.0。

F/G:在TEMAF型壳体和G型壳体中,有一纵向横隔板,F/G就是对通过此板的热量泄漏的修正。

如果F/G<0.95,考虑使用保温板或增加壳程串联数。

11.3.9 总传热系数首先从流体的相态、物性和以往经验上来分析计算结果是否合理。

另外,污垢系数的选取对传热系数也有很大的影响,对计算结果应综合分析,并结合实际经验来评定。

11.3.10 管子振动换热管的管束属于弹性体,被流过的流体扰动,离开其平衡位置,管子产生振动。

在壳侧,拉杆和隔板也有振动的倾向,但这些部件的刚性比管子大,所以不容易被激起振动。

设计计算结束后为保证换热器的稳定操作,应校核计算结果中的有关管振动各项数值,如:临界流动速度(criticalvelocity)、涡流脱落(vortexshedding)、湍流抖振(turbulentbuf feting)、声音共振(acousticresonance)和振幅等。

通常当折流板间距(包括进、出口处)超过400mm时,有可能发生管子振动。

当壳侧物流为液体时,需仔细检查临界流动速度及涡流脱落频率值的大小;而当壳侧物流是气体时,应仔细检查临界流动速度、涡流脱落、湍流抖振、声音共振和振幅等值是否满足无振动的要求。

如果因为在进、出口处的折流板间距过大而造成了振动,可通过在接管口下增加支撑板来避免。

另外为避免振动的发生,折流板间距应小于TEMA最大不支撑长度的80%。

11.4 如何调整设计方案,得到最佳计算结果通常情况下,象温度、压降和传热系数等设计计算控制要素很少彼此较好地相配合,经常是某一设计要素为设计计算的控制因素,由于一个简单的设计变更能带来设备尺寸的减小,因此找出控制因素能尽快有效的帮你解决问题。

11.4.1传热系数为控制因素时总传热阻力的大小主要是由壳侧、管侧、污垢和管子的金属阻力来决定的,为了提高总传热系数的大小,应分析是哪一侧的传热系数影响了它,采用何种方法,可以提高传热系数值。

相关主题