光谱遥感技术在水质监测中的应用
1、水体遥感监测的基本理论
1.1 水体遥感监测原理、特点。
影响水质的参数有:水中悬浮物、藻类、化学物质、溶解性有机物、热释放物、病原体和油类物质等。
随着遥感技术的革新和对物质光谱特征研究的深入,可以监测的水质参数种类也在逐渐增加,除了热污染和溢油污染等突发性水污染事故的监测外,用遥感监测的水质数据大致可以分为以下四大类:浑浊度、浮游植物、溶解性有机物、化学性水质指标。
利用遥感技术进行水环境质量监测的主要机理是被污染水体具有独特的有别于清洁水体的光谱特征,这些光谱特征体现在其对特定波长的光的吸收或反射,而且这些光谱特征能够为遥感器所捕获并在遥感图象中体现出来。
如当水体出现富营养化时,浮游植物中的叶绿素对近红外波段具有明显的“陡坡效应”,故而这类水体兼有水体和植物的光谱特征,即在可见光波段反射率低,在近红外波段反射率却明显升高。
1.2水质参数的遥感监测过程。
首先,根据水质参数选择遥感数据,并获得同期内的地面监测的水质分析数据。
现今广泛使用的遥感图象波段较宽,所反映的往往是综合信息,加之太阳光、大气等因素的影响,遥感信息表现的不甚明显,要对遥感数据进行一系列校正和转换将原始数字图像格式转换为辐射值或反射率值。
然后根据经验选择不同波段或波段组合的数据与同步观测的地面数据进行统
计分析,再经检验得到最后满意的模型方程。
2、水质遥感监测常用的高光谱数据的获取
2.1 非成像光谱仪数据。
非成像光谱仪主要指各种野外工作时用的地面光谱测量仪,地物的光谱反射率不以影像的形式记录,而以图形等非影像形式记录。
常见的有ASD野外光谱仪、便携式超光谱仪等。
2.2 成像光谱仪数据。
成像光谱仪也称高光谱成像仪,实质上是将二维图像和地物光谱测量结合起来的图谱合一的遥感技术,其光谱分辨率高达纳米数量级。
高光谱成像的数据是一叠连续多个波段
成像获得的样品的图像,就是俗称的图像立方体(Image cube),见图一。
获得这种图像立方体主要有三种方式:
图一:一种比较典型的高光谱图像立方体
第一种是航天级别的,如我国的神舟七号飞船就成安装类似的成像光谱仪。
使用的成像光谱仪非常庞大,每次实验的费用非常巨大;
第二种是航空级别,使用小型飞机或无人机作为光谱仪的搭载平台,是目前主要的遥感成像工作方法。
但是要获得比较好的实验结果并不容易,需要精确的GPS和惯导定位,高性能的计算机和高频率的拍摄速度。
第三种是地面级别,把推扫式成像光谱仪放置在地面,配备旋转位移台或线形位移台进行光谱扫描。
现在已经有新型的地面成像光谱仪,如美国SOC710/SOC730等,利用仪器内部的扫描装置实现推扫成像,即光谱仪和被测物均不运动即可完成高光谱成像,而不需要配备位移台,这样就大大减轻了仪器重量,使用更为方便。
图二:成像光谱仪SOC710 Hyperspectral imager,内置扫描装置,不需位移云台通过以上三种方式可进行水体水质进行高光谱成像遥感研究,对一些水质参数,如叶绿素浓度、悬浮物浓度、溶解性有机物进行估测。
3、水质遥感存在的问题与发展趋势
3.1 存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。
②监测精度不高,各种算法以经验、半经验方法为主。
③算法具有局部性、地方性和季节性,适用性、可移植性差。
④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。
3.2 发展趋势
3.2.1 建立遥感监测技术体系。
研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。
3.2.2 加强水质遥感基础研究。
加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。
3.2.3 拓宽遥感水质监测项。
现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。
应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。
3.2.4 提高水质遥感监测精度。
研究表明利用遥感进行水质参数反演,其反演精度、稳定度、空间可扩展性受遥感波段设置影响较大,利用星载高光谱数据进行水质参数反演,对其上百的波段宽度为10nm左右的连续波段与主要水质参数的波谱响应特性进行研究,确定水质参数诊断性波谱及波段组合,形成构造水质参数遥感模型和反演的核心技术,提高水质监测精度。
3.2.5 扩展水质遥感监测模型空间。
系统深入的研究水质组分的内在光学特性,利用高光谱数据和中、低分辨率多光谱数据进行水质遥感定量监测机理研究,进行水质组分的定量提取和组分间混合信息的剥离,消除水质组分间的相互干扰,建立不受时间和地域限制的水质参数反演算法,形成利用中内陆水体水质多光谱遥感监测方法和技术研究低分辨率遥感数据进行大范围、动态监测的遥感定量模型。
3.2.6 改进统计分析技术。
利用光谱分辨率较低的宽波段遥感数据得到的水质参数算法精度都不是很高,可以借鉴已在地质、生态等领域应用的混合光谱分解技术,人工神经网络分类技术等,充分挖掘水质信息,建立不受时间和地域限制的水质参数反演算法,提高遥感定量监测精度。
3.2.7 综合利用“3S”技术。
利用遥感技术视域广,信息更新快的特点,实时、快速地提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。
将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速发布,推动国家水安全预警系统建设。